
Ground Truth: Checking Vampire Proofs
via Satisfiability Modulo Theories

Michael Rawson3 (�), Andrei Voronkov1,2

, Johannes Schoisswohl4 , and Anja Petković Komel4

1 EasyChair
2 University of Manchester, United Kingdom

3 University of Southampton, United Kingdom, michael@rawsons.uk
4 TU Wien, Austria

Abstract. The Vampire automated theorem prover is extended to out-
put proofs in such a way that each inference is represented by a quantifier-
free SMT instance. If every instance is unsatisfiable, the proof can be
considered verified by an external SMT solver. This pragmatic form of
proof checking places only a very light burden on the SMT solver, and
can easily handle inferences that other systems may find difficult, such
as theory inferences or extensive ground reasoning. The method is con-
siderably easier to implement than proof formats based on small kernels
and covers a greater variety of modern-day inferences.

Keywords: automated theorem proving · SMT · verified proofs

Vampire [27] is an advanced automated theorem prover (ATP) for first-order
logic, extended to reason in a polymorphic logic with theories such as real arith-
metic and datatypes. For various reasons, not least Vampire’s complexity, users
are sometimes unwilling to take Vampire’s proofs on trust, and so they check
them to increase their confidence in the proof. User attitudes and requirements
vary, and so too their methods of checking proofs. In particular, some users re-
quire that the proof be reconstructed in another format, such as the internal
language and logic of an interactive theorem prover.

One way of checking proofs [42] is to use an external ATP5 to replay proofs
inference-by-inference, invoking the external ATP to re-prove each step in the
proof. The external ATP could be an “old faithful” theorem prover like Otter [29],
assumed free of bugs due to long service, a system so small that it is hard to
doubt its correctness, like leanCoP [34], or an ATP that itself produces checkable
proofs, like Metis [22]. The underlying assumption here is that each step in the
proof is small enough that it can be easily re-proved by the external ATP, but in
practice this is not always the case. This is exacerbated with modern inference
systems that may involve many premises and implicit deductions [45, 46] or

5 Or even the ATP itself: Vampire developers sometimes use Vampire to check Vam-
pire proof steps. The resulting ouroboros nevertheless catches bugs.

http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0003-1073-7615
http://orcid.org/0000-0001-5550-196X
http://orcid.org/0000-0001-7203-6641

2 Voronkov et al.

reasoning modulo theory [25, 37]. For reconstructing proofs the inference-by-
inference method works but is labour-intensive in practice [18,21].

Instead, a degenerate form of this approach is popular for proof automation
in interactive theorem proving. Here, there are usually many more axioms than
necessary to prove a given conjecture. A strong ATP like Vampire is used to
find a proof in the presence of superfluous axioms. The proof is then discarded,
recording only which axioms were necessary to find the proof. A proof is then
found again using only these axioms and the interactive theorem prover’s internal
proof search. Isabelle’s Sledgehammer [30] uses this to great effect. Here it is even
more likely that the reconstructing ATP is unable to find a proof.

Finally, it is possible to modify ATPs to output proofs directly in the for-
mat desired for checking. This could be an interactive theorem prover’s logic,
an intermediate language designed for inter-operation [4], or a language specifi-
cally designed only for proof checking [6]. In principle this approach means that
proof checking is straightforward and guaranteed to work. Unfortunately, doing
this in practice is also labour-intensive. Typically, formats designed for checking
proofs require spelling out simple inferences in great detail, do not accept ATP
shorthands (e.g. treating the equality predicate as symmetric), and cannot rea-
son modulo theory. This last limitation is particularly vexing as Vampire grows
more capability for reasoning with theories, while small proof checking systems
are unlikely to offer built-in theory reasoning. In some cases Vampire relies on
the Z3 SMT solver [32] to perform inferences such as theory instantiation [38],
so Vampire does not even “know” what theory reasoning was done.

We propose a new technique for proof checking (Section 1) that:

– is simple to implement
– is simple to check, using only an incremental SMT solver
– is fast, not requiring excess time in practice
– is relatively human-readable
– provides counter-examples for debugging proof steps

We also discuss its implementation in Vampire (Section 2), carry out experi-
ments on a large subset of TPTP [43] and several SMT-LIB [36] logics (Section 3)
and propose a way to completely reconstruct Vampire proofs in other systems
using the technique (Section 5.1).

Preliminaries. We assume familiarity with automated and interactive theorem
proving, the resolution calculus [5], and satisfiability modulo theories (SMT) [10].
Some exposure to the SMT-LIB input language may help [9]. Notation is stan-
dard, but we occasionally use a bar over variables x̄ or terms t̄ to indicate
possibly-many variables or terms in that context.

1 Universal Inferences as Ground SMT Instances

Saturation theorem proving [5] is the gold standard for reasoning in first-order
logic. Proofs are performed by contradiction. First, the input set of formulas

Checking Vampire Proofs via SMT 3

is preprocessed and brought into clausal normal form, then inference rules are
applied deriving new clauses until at some point the empty clause, witnessing
contradiction, is derived. Completeness of state-of-the-art saturation theorem
provers builds on Herbrand’s Theorem, which might be stated as “a set of clauses
is unsatisfiable iff there are ground instances which are ground unsatisfiable”.
This means that in order to find a proof we can first compute all ground instances
of a clause, and then use a complete ground inference system on them.

Example 1. Consider the clauses ∀x, y.P (y)∨Q(x, a), ∀z.¬Q(b, z), and ∀w.¬P (w).
We first compute the grounding

P (a) ∨Q(a, a) ¬Q(b, a)
P (b) ∨Q(a, a) ¬Q(b, b)
P (a) ∨Q(b, a) ¬P (a)
P (b) ∨Q(b, a) ¬P (b)

then apply ground binary resolution twice to derive a contradiction:

P (b) ∨Q(b, a) ¬Q(b, a)

P (b) ¬P (b)

□

The grounding of a set of clauses is typically very large, and becomes infinite
in the presence of function symbols. This makes directly enumerating ground
instances and searching for applicable inferences in the ground set impractical.
Modern first-order theorem provers instead bypass grounding by working with
universally-quantified clauses and using unification [5] to compute the most gen-
eral instance of two clauses that makes an inference rule applicable.

Example 2. Consider the clauses from example 1. We apply non-ground binary
resolution twice to derive a contradiction, without first computing a grounding.

∀x, y.P (y) ∨Q(x, a) ∀z.¬Q(b, z)

∀y.P (y) ∀w.¬P (w)

□

The idea of using unification instead of explicit grounding is called lifting [5] and
can be seen as compressing a (potentially infinite) set of inferences into a single
inference. Lifting is a core principle of modern first-order theorem provers that
sets them apart from Nelson-Oppen style SMT solvers.

1.1 Proposed Technique

Proof-checking such lifted inferences between quantified formulae poses a chal-
lenge for SMT solvers and automated theorem provers alike, especially when
mixing theory reasoning with uninterpreted functions. This is where our method
ties in. Suppose we wish to check that a particular inference occurring in a proof
is sound. This means that we will need to show the conclusion ∀x̄. C[x̄] follows

4 Voronkov et al.

from the premises ∀ȳ.Pi[ȳ]. We can show this by refutation. For that, we first
negate and Skolemise the conclusion to obtain ¬C[σ̄]. If there are instances of
the premises Pi[t̄i] that, taken together, refute ¬C[σ̄], we can conclude that the
inference is valid. As our calculus uses lifting by unification such terms t̄i can be
directly found by using the unifying substitution θ computed in the rule appli-
cation: first we instantiate the premises with θ, and then we replace all variables
x̄ that occured in the conclusion C[x̄] with the respective Skolem constants σ̄.

Example 3. Take the first inference from example 2. The rule uses binary reso-
lution unifying Q(x, a) and Q(b, z) computing the unifier θ = {x 7→ b, z 7→ a}.
In order to prove that the rule is sound we can instantiate the premises with
the unifier, and instantiate the remaining free variable y with the Skolem con-
stant σ in order to get the instantiated premises P (σ) ∨ Q(b, a) and ¬Q(b, a).
Negating the conjecture produces ¬P (σ). This set of clauses is unsatisfiable iff
the inference is sound.

As the resulting set of clauses is ground, it is most easily refuted by an SMT
solver implementing a ground decision procedure.

Inhabited Sorts An edge case occurs when two variables are being unified. In
this case the unifier will contain variables that are not present in the conclusion,
thus Pi[t̄i]θ cannot be grounded by using the conclusion’s Skolem constants. In
such a case these variables can be instantiated with any ground term. If there
are no constant symbols in the signature we can introduce a new Skolem symbol
as sorts in first-order logic are assumed to be inhabited.

Example 4. Consider the last inference from example 2. Binary resolution is used
to unify P (y) and P (w) computing the unifier θ = {w 7→ y}. If we apply θ to the
premises we obtain the two non-ground clauses P (y), ¬P (y). In order to ground
them we can choose any arbitrary ground term for y, say b, to obtain the ground
premises P (b), ¬P (b).

1.2 Abilities and Limitations

As explained at the beginning of this section, most of Vampire’s inferences lift
ground inferences, which means that they can be covered by our method. This
includes the core superposition calculus, simplification rules such as subsump-
tion resolution, and most rules of the ALASCA calculus [25] for arithmetic rea-
soning. Further we support simple preprocessing rules like definition unfolding,
AVATAR [45] inferences except definition introduction (including the dreaded
avatar sat refutation), and axiomiatised theories; these rules do not instan-
tiate variables in premises and can be implemented systematically. Our imple-
mentation in Vampire uses the same code for 58 such rules.

The key benefit of our approach is that the queries posed to the SMT solver
are ground and relatively small compared to the size of the whole proof, which
means that they are easily checked by state-of-the-art decision procedures. In
contrast to checking every proof step without transforming it into the relevant

Checking Vampire Proofs via SMT 5

ground instances, with our method the SMT solver can not only check the cor-
rectness of a rule application, but also give a counter-example if some proof-step
is not correct. This can give insight into why a given inference is not sound.

However, there are some limitations to our new approach. Notably most
preprocessing steps cannot be handled, as they are not sound inferences but
transform the entire problem into an equisatisfiable form [20], relying on global
properties of the whole problem (like freshness of introduced symbols) instead
of performing a valid clause-to-clause inference. Proof steps in this category
are usually found in the conversion to normal form, such as Skolemisation or
definition introduction. We note that these steps also cause other proof checking
systems trouble [19, 42]. This does also occasionally occur during proof search,
such as when introducing definitions for AVATAR or clausifying higher-order
terms on the fly [33].

Further unsupported inferences are those that cannot be grounded. Quanti-
fier elimination rules used by the ALASCA [25,40] calculus, for example deriving
a ≤ b from ∀x : Q. a ≤ x ∨ x ≤ b, where an instance for x cannot be found by
unification. Still further limitations occurs with Vampire’s support for induc-
tion [26]. SMT solvers can check theory tautologies such as axiomatisations of
arithmetic, but do not by design detect that a particular induction scheme is
valid. Nascent support for induction [39] may later prove useful here.

2 Implementation

To demonstrate the method, we have a proof-of-concept implementation in Vam-
pire6. When activated with the flag -p smtcheck, Vampire does not produce
its usual proof format but instead an SMT-LIB script [9] suitable for processing
by an incremental SMT solver such as Z3 [32] or cvc5 [8]. If the SMT solver
produces only unsat outputs, the proof can be considered verified by the SMT
solver. Messages beginning “sorry” indicate that a step cannot yet be checked
and should be further inspected or processed. Errors or sat responses (which
cause an error) indicate a bug in Vampire or the SMT solver.

2.1 Script Format

The script first declares symbols from the input problem (including sorts, if
necessary) and provides a constant for each sort (Section 1.1). Then, for each
inference in Vampire’s proof, the script:

1. Uses an SMT-LIB (push) command to isolate the context for this inference.
2. Declares new Skolem constants from the negated conjecture.
3. Asserts the instances of the premises required.
4. Asserts the negated conjecture.
5. Checks satisfiability, (check-sat). The construct (set-info :status unsat)

is used to produce an error and halt if any steps fail checking.
6 https://github.com/vprover/vampire

https://github.com/vprover/vampire

6 Voronkov et al.

6. Clears the assertions and declared Skolems with (pop).

For inferences that are not yet or cannot be implemented, the (echo ...) com-
mand is used to inform the user that the inference must be taken on trust. No
satisfiability check occurs in this case. Figure 1 shows a single inference.

; signature declared once at the start of the script
(declare -sort iota 0) ; the built -in default sort
(declare -fun |_identity| () iota) ; user -provided symbols
(declare -fun |_multiply| (iota iota) iota)

(push) ; inference starts here
(declare -const v0 iota) ; Skolem constant
(declare -const v1 iota) ; Skolem constant
(assert (or (=

(| _multiply| (| _multiply| v0 v0) v1)
(| _multiply| v0 (| _multiply| v0 v1))))) ; premise

(assert (or (= |_identity| (| _multiply| v0 v0)))) ; premise
(assert (not (=

(| _multiply| v0 (| _multiply| v0 v1))
(| _multiply| |_identity| v1)))) ; conclusion

(set -info :status unsat)
(check -sat)
(pop) ; inference finishes here

Fig. 1. A self-contained extract from a group theory proof, deriving x·(x·y) = e·y from
x·(y ·z) = (x·y)·z and x·x = e. Note the instantiation of both axioms with appropriate
Skolem constants from the conclusion. User provided symbols are |_quoted|.

The user must presently trust that Vampire soundly instantiates and cor-
rectly transcribes clauses present in the script. This situation could be improved
with greater support for definitions in SMT-LIB: (define-fun ...) would al-
low us to define a clause in terms of its variables and later instantiate it soundly
by using the definition. However, our understanding is that this construct may
be treated as a universally-quantified formula rather than a macro by the SMT
solver, so we were unwilling to use it for this reason. A version of (define-fun
...) that must be treated as a macro would be very useful for us. An anony-
mous reviewer kindly suggested that using SMT solvers’ support for annota-
tions/triggers [31] would be another way to guide quantifier instantiation. We
carried out a short experiment and can confirm that trigger-based instantia-
tion works for this use-case. Like define-fun, however, triggers also rely on a
well-behaved quantifier instantiation routine.

Vampire supports both SMT-LIB and TPTP input problems. As some of
the features of TPTP are not supported in SMT-LIB, proofs of these TPTP
problems cannot be checked in a straightforward manner. Proofs which make

Checking Vampire Proofs via SMT 7

use of polymorphism [11] cannot be checked, although the recent SMT-LIB 2.7
standard and the upcoming SMT-LIB 3 should make this possible. If this were
not the case, monomorphisation would be an option, creating one function for
each instantiation of a polymorphic function. Arithmetic functions in TPTP [44]
that are not supported by SMT-LIB (e.g. the floor function ⌊·⌋ : R → R) also
cause trouble: some of these we “polyfill” by injecting a suitable translation,
others simply cannot be proof checked currently.

2.2 Computing Instances

When printing a proof, we now need to compute the instances of the premises
required for proof checking. It may at first appear that a substitution must
be kept for each inference during proof search, but in fact this is overkill. In-
stead, we record only enough information to recover the substitution we need.
Taking binary resolution as a representative example, we record which literals
from the parent clauses were resolved upon. At proof-printing time, we then
re-unify the literals to produce the required premise substitution. The overhead
of this implementation technique is non-zero, but small. Vampire loses only
5 proofs out of 7,839 in a single-strategy configuration over TPTP when the
--proof_extra full flag is set.

3 Experiments

The proof-of-concept implementation covers all Vampire’s core search infer-
ences, AVATAR, theory axioms, and the more common ALASCA inferences.
Other inferences are skipped, reporting a warning but allowing proof checking
to continue. To test this implementation, we ran Vampire:

1. In its default mode for 10 seconds over TPTP 9.0.0 problem set, covering
the CNF, FOF, and TF0 languages with arithmetic but excluding known-
satisfiable instances. ARI502_1 was excluded as it uses TPTP rational arith-
metic features that cannot be easily translated to SMT-LIB.

2. Using a fixed ALASCA configuration7 for 10 seconds over the non-incremental
SMT-LIB 2024 [36] problem set restricted to the LRA, NRA, and UFLRA logics.

In total this generated 13,159 SMT-LIB proof scripts. Generally these are short,
but there are some outliers. The largest script came from the TPTP problem
SWV545-1.010, weighing in at 331MB. The proof with the greatest number of
checked inferences is TPTP’s NUM378+1.010.015 with 378,298.

We ran the Z3 [32] and cvc5 [8] SMT solvers on the scripts. No unsound-
ness was found in Vampire’s proofs, although a known ALASCA bug was re-
discovered. After pulling the fix from upstream, all proofs checked successfully. Z3
is more permissive with identifiers than cvc5, which rejected a handful of TPTP
proof scripts, but suitably escaping identifiers fixed the problem. Z3 could check
7 -alasca on -to qkbo -uwa alasca_main

8 Voronkov et al.

all instances, but cvc5 times out on the final AVATAR refutation (an unsatisfi-
able SAT instance) for the TPTP problems ALG034+1, ALG035+1, and ALG101+1.
Switching cvc5’s SAT solver [17] resolved this.

3.1 Quantified Proof Scripts

We have gone to some effort in order to produce ground SMT proof scripts.
However, SMT solvers have good support for handling quantifiers [7], so this
may not be needed in practice. In order to check this, we produced quantified
scripts that simply include the universally-quantified premises and the negated
conjecture for each step. We found that although the SMT solvers dispatched
many proof steps quickly, unsurprisingly there are some Vampire steps for which
both Z3 and cvc5 run out of time. Out of 4,194 quantified scripts produced from
the SMT-LIB set of problems above, 85 exceeded a 10-second timeout when
checked with Z3, and a further 19 required in excess of 1 second to check. For
comparison, all ground scripts were checked in less than 0.2 seconds. After these
extreme cases, the difference between the two falls rapidly, and the majority can
be checked in less than 0.05 seconds.

4 Comparison with Other Methods

There are several approaches to proof-checking the output of ATPs. Verifying
all proof steps with a small kernel of an interactive theorem prover (ITP), es-
pecially when an ITP has been around long enough to be tried and tested (like
Coq [16], Agda [1] or Isabelle [23]), is currently deemed most trusted. Ideally the
amount of proof search during the verification phase is reduced to a minimum,
and outputting proofs directly in an ITP-checkable format can be done for the
core calculus [12, 14, 15, 24, 35]. Some features of Vampire that our approach
struggles with are directly expressible in this manner, like polymorphism, induc-
tion and introducing definitions. Additionally, exporting proofs directly to ITPs
contributes to interoperability [4]. However, in the presence of theories extending
the core calculus, this becomes less feasible in practice. ITPs have some limited
support to reason with theories — the tactic omega in Coq is the canonical
example — but they tend to be inefficient compared to SMT solvers. It would
also require carrying around superfluous (to Vampire) information and produce
proofs of unreasonable size in some cases.

A similar approach to ours is treating every (quantified, not ground) inference
in a proof as a separate conjecture and re-deriving each individual step from the
premises it refers to, using an external ATP. As we are dealing with non-ground
problems, no decision procedures exist, which means ATPs and SMT solvers
alike may time out on at least some valid proof steps, which we confirm occurs
in practice in Section 3.1. In contrast, with our approach we are guaranteed
that SMT solvers can prove sound proof steps, and can even obtain witnesses
for unsoundness (i.e. counter-models) if an unsound proof step is detected. An
example for this is the tool ekstrakto [19], which re-derives required steps from a

Checking Vampire Proofs via SMT 9

TSTP proof using external ATPs that produces proof in the λΠ-modulo calcu-
lus [12, 14, 15, 24]. An advantage of such an approach is that it can in principle
work on most first-order provers without modification, but in practice success is
limited, as it fails to handle advanced proof search features like Avatar infer-
ences or theories.

Proofs can also be checked by a separate verifier designed for a specific proof
format. Theory-Extensible Sequent Calculus (TESC) [6] is a proof format for
first-order ATPs. The calculus subsumes a large fraction of first-order formulas
handled by Vampire, including reasoning with Avatar. Not all problems solved
by Vampire can be translated from the TSTP trace to TESC automatically, and
the support for reasoning with theories is limited. There are three verifiers for
TESC currently available, one of which is formalized in ITP Agda [1], enhancing
the trustworthiness of the verifier. One can also verify the proof steps seman-
tically as in GDV [42]: here not only are proof steps checked as in Section 3.1
with a trusted ATP, but additionally some of the proof structure is checked, for
example that the parents of inferences exist and that a refutation ends in falsum.

Similar techniques are applied to SMT solvers. Proofs emitted in the re-
cently proposed format Alethe [41] (currently cvc5 [8] and veriT [13] support
this format), can be verified either by a separate verifier Carcara [2] (not for-
mally checked); imported to Isabelle via the smt tactic [28], checking each step of
the proof with Isabelle’s internal kernel; or imported to Coq using the SMTCoq
plugin [3].

5 Conclusion

We introduced a method for efficiently checking proofs produced from state-
of-the-art saturation theorem provers. Any valid inference that lifts a ground
inference is supported in principle. Checking each individual quantified proof step
is reduced to a ground satisfiability check which can be performed efficiently by
the decision procedures present in SMT solvers. We therefore support, out of the
box, proofs that involve theory reasoning (like arithmetic), which pose a severe
challenge to other ATP proof checking systems. In practice, even very lengthy,
difficult Vampire proofs are efficiently verified by third-party SMT solvers.

5.1 Fully Reconstructed Proofs

Users who wish to fully reconstruct proofs in their system of choice may object
that we have not addressed this, only moved trust from Vampire to the SMT
solver. However, SMT proof technology is improving rapidly with several recent
proposals, and it seems likely that in the near future this will be possible. Using
our method, a proof could be fully reconstructed by gluing together the SMT
unsatisfiability proof for each Vampire inference together into one long contin-
uous proof. The host system would still need to check that premise instances
are instances of known clauses (Section 2.1), that the input has been reproduced
faithfully, and deal with inferences that are not yet possible (Section 1.2), but
the hard part of reconstructing Vampire proofs is done.

10 Voronkov et al.

Acknowledgments. We acknowledge funding from the ERC Consolidator Grant
ARTIST 101002685, the COST Action CA20111 EuroProofNet, the TU Wien SecInt
Doctoral College, the FWF SFB project SpyCoDe F8504, the WWTF ICT22-007 grant
ForSmart, and the Amazon Research Award 2023 QuAT. We thank the anonymous re-
viewers for their suggestions.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. The Agda proof assistant. https://wiki.portal.chalmers.se/agda/ (2021)
2. Andreotti, B., Lachnitt, H., Barbosa, H.: Carcara: An efficient proof checker and

elaborator for SMT proofs in the alethe format. In: Sankaranarayanan, S., Shary-
gina, N. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 29th International Conference, TACAS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France,
April 22-27, 2023, Proceedings, Part I. Lecture Notes in Computer Science, vol.
13993, pp. 367–386. Springer (2023). https://doi.org/10.1007/978-3-031-30823-9_
19, https://doi.org/10.1007/978-3-031-30823-9_19

3. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modu-
lar integration of sat/smt solvers to coq through proof witnesses. In: Jouannaud,
J.P., Shao, Z. (eds.) Certified Programs and Proofs. pp. 135–150. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

4. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a logical framework based
on the λΠ-calculus modulo theory. CoRR abs/2311.07185 (2023). https://doi.
org/10.48550/ARXIV.2311.07185, https://doi.org/10.48550/arXiv.2311.07185

5. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 19–
99. Elsevier and MIT Press (2001). https://doi.org/10.1016/B978-044450813-3/
50004-7, https://doi.org/10.1016/b978-044450813-3/50004-7

6. Baek, S.: A formally verified checker for first-order proofs. In: Cohen, L., Kaliszyk,
C. (eds.) 12th International Conference on Interactive Theorem Proving, ITP 2021,
June 29 to July 1, 2021, Rome, Italy (Virtual Conference). LIPIcs, vol. 193, pp.
6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/LIPICS.ITP.2021.6, https://doi.org/10.4230/LIPIcs.ITP.2021.6

7. Barbosa, H.: New techniques for instantiation and proof production in SMT solv-
ing. Ph.D. thesis, Université de Lorraine (2017)

8. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13243, pp. 415–442. Springer
(2022). https://doi.org/10.1007/978-3-030-99524-9_24, https://doi.org/10.1007/
978-3-030-99524-9_24

https://wiki.portal.chalmers.se/agda/
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.48550/ARXIV.2311.07185
https://doi.org/10.48550/ARXIV.2311.07185
https://doi.org/10.48550/ARXIV.2311.07185
https://doi.org/10.48550/ARXIV.2311.07185
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.4230/LIPICS.ITP.2021.6
https://doi.org/10.4230/LIPICS.ITP.2021.6
https://doi.org/10.4230/LIPICS.ITP.2021.6
https://doi.org/10.4230/LIPICS.ITP.2021.6
https://doi.org/10.4230/LIPIcs.ITP.2021.6
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

Checking Vampire Proofs via SMT 11

9. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0. In:
Proceedings of the 8th international workshop on Satisfiability Modulo Theories
(Edinburgh, UK). vol. 13, p. 14 (2010)

10. Barrett, C.W., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
305–343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_11, https:
//doi.org/10.1007/978-3-319-10575-8_11

11. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-
1 polymorphism. In: Bonacina, M.P. (ed.) Automated Deduction - CADE-24 -
24th International Conference on Automated Deduction, Lake Placid, NY, USA,
June 9-14, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7898, pp.
414–420. Springer (2013). https://doi.org/10.1007/978-3-642-38574-2_29, https:
//doi.org/10.1007/978-3-642-38574-2_29

12. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning. pp. 151–165. Springer Berlin
Heidelberg, Berlin, Heidelberg (2007)

13. Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: verit: An open, trustable
and efficient smt-solver. In: Schmidt, R.A. (ed.) Automated Deduction - CADE-
22, 22nd International Conference on Automated Deduction, Montreal, Canada,
August 2-7, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5663, pp.
151–156. Springer (2009). https://doi.org/10.1007/978-3-642-02959-2_12, https:
//doi.org/10.1007/978-3-642-02959-2_12

14. Burel, G., Bury, G., Cauderlier, R., Delahaye, D., Halmagrand, P., Hermant, O.:
First-order automated reasoning with theories: When deduction modulo theory
meets practice. Journal of Automated Reasoning 64(6), 1001–1050 (2020). https:
//doi.org/10.1007/s10817-019-09533-z

15. Bury, G.: Integrating rewriting, tableau and superposition into SMT. Theses, Uni-
versité Sorbonne Paris Cité (Jan 2019), https://theses.hal.science/tel-02612985

16. The Coq proof assistant, version 2021.02.2. https://coq.inria.fr/ (2021)
17. Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.:

IPASIR-UP: user propagators for CDCL. In: Mahajan, M., Slivovsky, F. (eds.) 26th
International Conference on Theory and Applications of Satisfiability Testing, SAT
2023, July 4-8, 2023, Alghero, Italy. LIPIcs, vol. 271, pp. 8:1–8:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SAT.
2023.8, https://doi.org/10.4230/LIPIcs.SAT.2023.8

18. Fleury, M., Blanchette, J.: Translation of proofs provided by external provers. Tech.
rep., Tech. rep. Techniche Universität München (2014)

19. Haddad, M.Y.E.: Integrating Automated Theorem Provers in Proof Assistants.
(Utiliser des démonstrateurs automatiques dans un assistant à la preuve). Ph.D.
thesis, University of Paris-Saclay, France (2021), https://tel.archives-ouvertes.fr/
tel-03387912

20. Heule, M., Kiesl, B.: The potential of interference-based proof systems. In: Reger,
G., Traytel, D. (eds.) ARCADE 2017, 1st International Workshop on Auto-
mated Reasoning: Challenges, Applications, Directions, Exemplary Achievements,
Gothenburg, Sweden, 6th August 2017. EPiC Series in Computing, vol. 51, pp. 51–
54. EasyChair (2017). https://doi.org/10.29007/VR7N, https://doi.org/10.29007/
vr7n

21. Hurd, J.: Integrating gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz,
A., Paulin-Mohring, C., Théry, L. (eds.) Theorem Proving in Higher Order

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/s10817-019-09533-z
https://doi.org/10.1007/s10817-019-09533-z
https://doi.org/10.1007/s10817-019-09533-z
https://doi.org/10.1007/s10817-019-09533-z
https://theses.hal.science/tel-02612985
https://coq.inria.fr/
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPIcs.SAT.2023.8
https://tel.archives-ouvertes.fr/tel-03387912
https://tel.archives-ouvertes.fr/tel-03387912
https://doi.org/10.29007/VR7N
https://doi.org/10.29007/VR7N
https://doi.org/10.29007/vr7n
https://doi.org/10.29007/vr7n

12 Voronkov et al.

Logics, 12th International Conference, TPHOLs’99, Nice, France, September,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1690, pp. 311–322.
Springer (1999). https://doi.org/10.1007/3-540-48256-3_21, https://doi.org/10.
1007/3-540-48256-3_21

22. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. Design
and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-
2003-212448 in NASA Technical Reports pp. 56–68 (2003)

23. Isabelle. https://isabelle.in.tum.de/ (2016)
24. Korovin, K.: iprover – an instantiation-based theorem prover for first-order logic

(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Au-
tomated Reasoning. pp. 292–298. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

25. Korovin, K., Kovács, L., Reger, G., Schoisswohl, J., Voronkov, A.: ALASCA: rea-
soning in quantified linear arithmetic. In: Sankaranarayanan, S., Sharygina, N.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 29th
International Conference, TACAS 2023, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-
27, 2023, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13993, pp.
647–665. Springer (2023). https://doi.org/10.1007/978-3-031-30823-9_33, https:
//doi.org/10.1007/978-3-031-30823-9_33

26. Kovács, L., Hozzová, P., Hajdú, M., Voronkov, A.: Induction in saturation. In:
Benzmüller, C., Heule, M.J.H., Schmidt, R.A. (eds.) Automated Reasoning -
12th International Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 14739, pp. 21–29.
Springer (2024). https://doi.org/10.1007/978-3-031-63498-7_2, https://doi.org/
10.1007/978-3-031-63498-7_2

27. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 8044, pp. 1–35. Springer (2013). https://doi.org/
10.1007/978-3-642-39799-8_1, https://doi.org/10.1007/978-3-642-39799-8_1

28. Lachnitt, H., Fleury, M., Aniva, L., Reynolds, A., Barbosa, H., Nötzli, A., Barrett,
C., Tinelli, C.: Isarare: Automatic verification of smt rewrites in isabelle/hol. In:
Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 311–330. Springer Nature Switzerland, Cham (2024)

29. McCune, W.: OTTER 3.3 reference manual. CoRR cs.SC/0310056 (2003), http:
//arxiv.org/abs/cs/0310056

30. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35–60 (2008). https://doi.org/10.1007/S10817-007-9085-Y,
https://doi.org/10.1007/s10817-007-9085-y

31. Moskal, M.: Programming with triggers. In: Proceedings of the 7th International
Workshop on Satisfiability Modulo Theories. pp. 20–29 (2009)

32. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24, https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1007/3-540-48256-3_21
https://doi.org/10.1007/3-540-48256-3_21
https://doi.org/10.1007/3-540-48256-3_21
https://doi.org/10.1007/3-540-48256-3_21
https://isabelle.in.tum.de/
https://doi.org/10.1007/978-3-031-30823-9_33
https://doi.org/10.1007/978-3-031-30823-9_33
https://doi.org/10.1007/978-3-031-30823-9_33
https://doi.org/10.1007/978-3-031-30823-9_33
https://doi.org/10.1007/978-3-031-63498-7_2
https://doi.org/10.1007/978-3-031-63498-7_2
https://doi.org/10.1007/978-3-031-63498-7_2
https://doi.org/10.1007/978-3-031-63498-7_2
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
http://arxiv.org/abs/cs/0310056
http://arxiv.org/abs/cs/0310056
https://doi.org/10.1007/S10817-007-9085-Y
https://doi.org/10.1007/S10817-007-9085-Y
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

Checking Vampire Proofs via SMT 13

33. Nummelin, V., Bentkamp, A., Tourret, S., Vukmirovic, P.: Superposition with first-
class booleans and inprocessing clausification. In: Platzer, A., Sutcliffe, G. (eds.)
Automated Deduction - CADE 28 - 28th International Conference on Automated
Deduction, Virtual Event, July 12-15, 2021, Proceedings. Lecture Notes in Com-
puter Science, vol. 12699, pp. 378–395. Springer (2021). https://doi.org/10.1007/
978-3-030-79876-5_22, https://doi.org/10.1007/978-3-030-79876-5_22

34. Otten, J., Bibel, W.: leancop: lean connection-based theorem proving. J.
Symb. Comput. 36(1-2), 139–161 (2003). https://doi.org/10.1016/S0747-7171(03)
00037-3, https://doi.org/10.1016/S0747-7171(03)00037-3

35. Petković Komel, A., Rawson, M., Suda, M.: Case study: Verified Vampire proofs
in the λΠ-calculus modulo. CoRR abs/2503.15541 (2025). https://doi.org/10.
48550/ARXIV.2503.15541, https://doi.org/10.48550/arXiv.2503.15541

36. Preiner, M., Schurr, H., Barrett, C.W., Fontaine, P., Niemetz, A., Tinelli, C.: SMT-
LIB release 2024 (non-incremental benchmarks) (version 2024.04.23). https://
doi.org/10.5281/zenodo.11061097 (Apr 2024). https://doi.org/10.5281/ZENODO.
11061097, https://doi.org/10.5281/zenodo.11061097, accessed on YYYY-MM-DD.

37. Reger, G., Bjørner, N.S., Suda, M., Voronkov, A.: AVATAR modulo theories. In:
Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. 2nd Global Conference
on Artificial Intelligence, September 19 - October 2, 2016, Berlin, Germany. EPiC
Series in Computing, vol. 41, pp. 39–52. EasyChair (2016). https://doi.org/10.
29007/K6TP, https://doi.org/10.29007/k6tp

38. Reger, G., Suda, M., Voronkov, A.: Unification with abstraction and theory in-
stantiation in saturation-based reasoning. In: Beyer, D., Huisman, M. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 24th Interna-
tional Conference, TACAS 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol.
10805, pp. 3–22. Springer (2018). https://doi.org/10.1007/978-3-319-89960-2_1,
https://doi.org/10.1007/978-3-319-89960-2_1

39. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) Verification, Model Checking, and Abstract Interpretation
- 16th International Conference, VMCAI 2015, Mumbai, India, January 12-14,
2015. Proceedings. Lecture Notes in Computer Science, vol. 8931, pp. 80–98.
Springer (2015). https://doi.org/10.1007/978-3-662-46081-8_5, https://doi.org/
10.1007/978-3-662-46081-8_5

40. Schoisswohl, J., Kovács, L., Korovin, K.: VIRAS: conflict-driven quantifier elimi-
nation for integer-real arithmetic. In: Bjørner, N.S., Heule, M., Voronkov, A. (eds.)
LPAR 2024: Proceedings of 25th Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Port Louis, Mauritius, May 26-31, 2024. EPiC Series
in Computing, vol. 100, pp. 147–164. EasyChair (2024). https://doi.org/10.29007/
KG4V, https://doi.org/10.29007/kg4v

41. Schurr, H., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: Towards a generic SMT
proof format (extended abstract). In: Keller, C., Fleury, M. (eds.) Proceedings
Seventh Workshop on Proof eXchange for Theorem Proving, PxTP 2021, Pittsburg,
PA, USA, July 11, 2021. EPTCS, vol. 336, pp. 49–54 (2021). https://doi.org/10.
4204/EPTCS.336.6, https://doi.org/10.4204/EPTCS.336.6

42. Sutcliffe, G.: Semantic derivation verification: Techniques and implementation.
Int. J. Artif. Intell. Tools 15(6), 1053–1070 (2006). https://doi.org/10.1142/
S0218213006003119, https://doi.org/10.1142/S0218213006003119

https://doi.org/10.1007/978-3-030-79876-5_22
https://doi.org/10.1007/978-3-030-79876-5_22
https://doi.org/10.1007/978-3-030-79876-5_22
https://doi.org/10.1007/978-3-030-79876-5_22
https://doi.org/10.1007/978-3-030-79876-5_22
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.48550/ARXIV.2503.15541
https://doi.org/10.48550/ARXIV.2503.15541
https://doi.org/10.48550/ARXIV.2503.15541
https://doi.org/10.48550/ARXIV.2503.15541
https://doi.org/10.48550/arXiv.2503.15541
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/ZENODO.11061097
https://doi.org/10.5281/ZENODO.11061097
https://doi.org/10.5281/ZENODO.11061097
https://doi.org/10.5281/ZENODO.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.29007/K6TP
https://doi.org/10.29007/K6TP
https://doi.org/10.29007/K6TP
https://doi.org/10.29007/K6TP
https://doi.org/10.29007/k6tp
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.29007/KG4V
https://doi.org/10.29007/KG4V
https://doi.org/10.29007/KG4V
https://doi.org/10.29007/KG4V
https://doi.org/10.29007/kg4v
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.1142/S0218213006003119
https://doi.org/10.1142/S0218213006003119
https://doi.org/10.1142/S0218213006003119
https://doi.org/10.1142/S0218213006003119
https://doi.org/10.1142/S0218213006003119

14 Voronkov et al.

43. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to th0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017). https://doi.org/
10.1007/S10817-017-9407-7, https://doi.org/10.1007/s10817-017-9407-7

44. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-
order form with arithmetic. In: Bjørner, N.S., Voronkov, A. (eds.) Logic for Pro-
gramming, Artificial Intelligence, and Reasoning - 18th International Conference,
LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7180, pp. 406–419. Springer (2012). https://doi.org/10.
1007/978-3-642-28717-6_32, https://doi.org/10.1007/978-3-642-28717-6_32

45. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In:
Biere, A., Bloem, R. (eds.) Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8559, pp. 696–710. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_46, https://doi.org/10.1007/978-3-319-08867-9_46

46. Xu, Y., Liu, J., Chen, S., Zhong, X., He, X.: Contradiction separation based dy-
namic multi-clause synergized automated deduction. Inf. Sci. 462, 93–113 (2018).
https://doi.org/10.1016/J.INS.2018.04.086, https://doi.org/10.1016/j.ins.2018.04.
086

https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1016/J.INS.2018.04.086
https://doi.org/10.1016/J.INS.2018.04.086
https://doi.org/10.1016/j.ins.2018.04.086
https://doi.org/10.1016/j.ins.2018.04.086

	Ground Truth: Checking Vampire Proofs via Satisfiability Modulo Theories

