
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

The Vampire Diary

Filip Bártek1 , Ahmed Bhayat4 , Robin Coutelier3 , Márton Hajdu3 ,

Matthias Hetzenberger3 , Petra Hozzová1 , Laura Kovács3(�) ,

Jakob Rath3 , Michael Rawson5(�) , Giles Reger4 , Martin Suda1(�) ,

Johannes Schoisswohl3 , and Andrei Voronkov2,4(�)

1 Czech Technical University in Prague, Czech Republic
martin.suda@cvut.cz

2 EasyChair
3 TU Wien, Vienna, Austria
laura.kovacs@tuwien.ac.at

4 University of Manchester, UK
andrei@voronkov.com

5 University of Southampton, UK
michael@rawsons.uk

Abstract. During the past decade of continuous development, the the-
orem prover Vampire has become an automated solver for the combined
theories of commonly-used data structures. Vampire now supports arith-
metic, induction, and higher-order logic. These advances have been made
to meet the demands of software verification, enabling Vampire to ef-
fectively complement SAT/SMT solvers and aid proof assistants. We ex-
plain how best to use Vampire in practice and review the main changes
Vampire has undergone since its last tool presentation, focusing on the
engineering principles and design choices we made during this process.

1 Introduction

Automated reasoning has become indispensable for certifying the correctness of
software systems and services [55], from Boolean satisfiability (SAT) through
satisfiability modulo theories (SMT) to automated theorem proving (ATP) in
first-order and higher-order logic. This tool paper describes major developments
in saturation-based theorem proving, bringing our Vampire system to bear on
modern software certification. Vampire now reasons efficiently in a polymor-
phic first-order logic with theories, induction and quantifiers, which is realized
through (i) combining satisfiability solving with first-order theorem proving us-
ing the AVATAR framework [68,47]; (ii) native support for quantified reasoning
with mixed arithmetic using extensions of superposition with quantifier elimina-
tion [37,56]; and (iii) embedding second-order induction schemata as inference
rules in proof search [22,40]. Furthermore, (iv) Vampire has evolved to support
higher-order logic [9], program synthesis [27], and finding counterexamples [49].

Our advances in saturation-based reasoning proved to make a difference.
Vampire outperforms or complements many other state-of-the-art reasoners,

https://doi.org/10.5281/zenodo.15207788
https://doi.org/10.5281/zenodo.15207788
http://orcid.org/0000-0002-1822-2651
http://orcid.org/0000-0002-1343-5084
http://orcid.org/0009-0002-4735-5215
http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0003-0346-6749
http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0001-6353-952X
http://orcid.org/0000-0001-6990-8699
http://orcid.org/0000-0001-5550-196X
http://orcid.org/0000-0003-1073-7615

2 The Vampire Team

Fi
rs
t-
O
rd

er
Th

eo
re
m

Pr
ov

in
g
an

d
Va

mp
ir
e

20
13

AV
AT

A
R

20
14

Fi
ni
te

m
od

el
bu

ild
in
g

20
15

FO
O
L

20
16

In
du

ct
iv
el
y
de

fin
ed

da
ta

ty
pe

s

20
17

U
ni
fic

at
io
n

wi
th

ab
st
ra

ct
io
n

20
18

Co
m
bi
na

to
ry

hi
gh

er
-o
rd

er
lo
gi
c

20
19

In
du

ct
io
n

20
19

/2
0

O
pe

n-
so

ur
ce

un
de

r

BS
D

lic
en

se

20
20

A
LA

SC
A

20
23

H
ig
he

r-
or

de
r
lo
gi
c

20
23

R
ec

ur
siv

e

sy
nt

he
sis

20
24

Fig. 1. Vampire timeline since our 2013 tutorial tool paper [41].

including leading SMT solvers and inductive theorem provers. For example, in
CASC-J12, the most recent world championship in theorem proving, Vampire
proved more problems than any other system in every competition division [64].
We believe that the increasing demand on efficient reasoning with quantifiers,
theories and induction turns Vampire into a powerful solver in the automa-
tion of mathematics [17], verification of logic programs [42], ensuring system
security [32], and many other areas.

This paper details the aforementioned advances in Vampire. It aims to ex-
plain how to use Vampire (Section 2) and to give an overview of the reasoning
techniques used under the hood in order to allow for reasoning in more expres-
sive logics (Section 4) and more efficient reasoning in general (Section 5). With
these new features, a new permissive license, and unprecedented performance,
we believe that a tool demonstration after more than a decade of continuous
development is overdue. Our diary of improvements since our 2013 tutorial pa-
per demonstration [41] is summarized in Figure 1. The present paper serves as
a self-contained tool demonstration, describing the many new features Vampire
supports and users can exploit. Our paper contains typical usage guidance, prop-
erly instructing readers/users interested in Vampire. For details on Vampire’s
calculus, inferences processes and proof search algorithms we refer to [41].

2 User Guide

Vampire ingests an input problem in either the TPTP [63] or SMT-LIB 2 [3]
formats. It then attempts to show unsatisfiability6 of the input by deriving fal-
sum through application of its logical calculus. If it succeeds, Vampire halts and
prints a step-by-step refutation. In some cases Vampire can also show satisfiabil-
ity. This happens either by finding a finite model (Section 5.2) or by saturation:
detecting that a refutation cannot be derived with a complete calculus.

6 TPTP allows the user to supply a conjecture: this formula is automatically negated.

The Vampire Diary 3

Licensing. Vampire is now open-source and available online7 under a 3-clause
BSD license. This has completely changed the Vampire team dynamics and cod-
ing culture: the development team grew, code became fully shared, and external
contributors can improve Vampire. The new license has increased the user base
of Vampire in teaching, research and development.

Vampire uses external code for specific tasks, including the MiniSat [18]
and CaDiCaL [11] SAT solvers, the Z3 SMT solver [16] (optional), the VI-
RAS quantifier elimination routine [56], and mini-gmp [20] for arbitrary-precision
arithmetic.
Installation. Vampire is written in C++17 [30] and uses the CMake [35] build
system. Since the previous tool demonstration over a decade ago [41], a series of
patches have improved portability and Vampire now runs on a variety of mod-
ern architectures and UNIX-like operating systems. We provide pre-compiled
binaries for UNIX-like systems, and it is generally straightforward to compile
Vampire from source on such systems. Support for other operating systems is
more experimental, but users report success with compatibility layers such as
the Windows Subsystem for Linux [43], Cygwin [45], or Cosmopolitan Libc [67].
Quick Start. It is possible, but usually undesirable, to invoke Vampire directly
on an input file. This will cause it to run a single proof attempt, which will likely
not be well-suited to the input. Instead, users should schedule an execution of a
portfolio of many different strategies, which is achieved with the invocation

vampire --mode portfolio --schedule <schedule> --cores 0 <problem>

where <problem> is the input problem, --cores 0 instructs Vampire to use all
available CPU cores, and <schedule> should be selected from Vampire’s list of
built-in schedules (Section 5.4), depending on the input.
Understanding the Output. Vampire prints status messages as new strate-
gies are launched or old strategies fail, until either a strategy succeeds or the time
limit is reached. When a strategy succeeds, by default Vampire reports an SZS
status [65] and then, assuming that the input is unsatisfiable, a human-readable
proof. The most common SZS statuses Vampire reports are:

Satisfiable: input does not contain a conjecture and is satisfiable
Unsatisfiable: input does not contain a conjecture and is unsatisfiable
CounterSatisfiable: conjecture present, after negation the input is satisfiable
Theorem: conjecture present, after negation the input is unsatisfiable
ContradictoryAxioms: conjecture present, but axioms alone are unsatisfiable

Controlling Output. Vampire by default uses the SZS standards for output
and reports a compact, human-readable proof. The Vampire output can be
changed with the output mode (-om) and proof format (-p) flags. For example,
-om smtcomp produces a very terse output suitable for SMT-COMP [4], while -p
tptp produces machine-readable TSTP [66] proofs. Some more exotic formats
such as LATEX (--latex_output) or Dedukti [1] are under development.
7 https://github.com/vprover/vampire/

https://github.com/vprover/vampire/

4 The Vampire Team

Setting Resource Limits. Vampire can be configured to limit the amount
of time (-t <seconds>), memory (-m <MB>), and on recent Linux systems the
number of userspace instructions retired (-i <MI>8). The value 0 means no limit.
Exploring Options. Vampire has many, many options. A complete list can
be generated with --show_options on, and a particular flag can be examined
with --explain, e.g. --explain output_mode. Most options only affect a sin-
gle strategy’s behavior, but some affect the global behavior of Vampire, such
as the proof format or the time limit. Single strategy options are not usually
controlled by the user but automatically set by portfolio schedules (more on this
in Section 5.4).

2.1 Looking Under the Hood

It is sometimes useful for users to inspect the internal state of Vampire, such as
when debugging or optimizing an encoding. Here we sketch the internal mecha-
nisms of Vampire and explain how to inspect them during operation.

Vampire works in two phases. First, the input is parsed, the conjecture — if
present — is negated, and the resulting formulas are converted to clause normal
form (CNF) and preprocessed. Then Vampire tries to derive the empty clause
(witnessing contradiction) in order to refute the CNF of the input problem. New
clauses are derived from old by applying generating inferences in Vampire’s
proof calculus, superposition [41]. The search space is partitioned into three
sets of clauses: new clauses have been freshly derived; passive clauses survived
Vampire’s simplification efforts but have not yet participated in inference, and
active clauses have themselves participated in inferences generating new clauses.
Vampire allows inspection of these processes. To show the clauses resulting from
an input, use

vampire --mode clausify <problem>

which causes Vampire to stop after preprocessing <problem> and print the
resulting CNF. The CNF may be surprising at times as Vampire’s preprocessing
will happily eliminate parts of the input that it can detect will not help reaching
a refutation. To inspect the progress of the preprocessing pipeline users may
--show_preprocessing on. Once proof search begins, --show_new on displays
new clauses (analogously, show_passive and show_active). Not all new clauses
will make it to passive: use --show_reductions on to see the simplifications
that Vampire applies.

3 Demonstration: Arithmetic and Induction

Consider the proposition “the sum of two lists of real numbers is equal to the
sum of their concatenation”. While clearly true, a formal proof requires reasoning
about arithmetic, algebraic datatypes, recursive functions, polymorphism, and at
8 Millions of instructions [61]. Instruction limits tend to more stable than time limits

across hardware and operating system conditions.

The Vampire Diary 5

least one inductive step. When given the natural first-order formalization of the
problem (Fig. 2) encoded into version 2.7 of SMT-LIB, Vampire is able to find
a proof immediately. We show a distilled version of the proof in mathematical
notation in Figure 3.

sum(ϵ) = 0
∀x : R. ∀xs : [R]. sum(x#xs) = x+ sum(xs)

Λα. ∀ys : [α]. ϵ++ ys = ys
Λα. ∀x : α. ∀xs, ys : [α]. (x#xs)++ ys = x#(xs++ ys)

∀xs, ys : [R]. sum(xs) + sum(ys) = sum(xs++ ys)

Fig. 2. Motivating example in polymorphic first-order logic with uninterpreted func-
tions sum : [R] → R, ++ : Λα. [α]× [α] → [α], algebraic datatypes and real arithmetic.

The proof displays some new features of Vampire, in particular the use of
structural induction (Sect. 4.2) and superposition-based arithmetic reasoning via
the ALASCA calculus (Sect. 4.1). These features are key to Vampire’s success
on this problem. The need for our unique blend of induction, arithmetic and
polymorphism is supported by the fact that other solvers such as CVC5 [2] or
Z3 [16] cannot, to the best of our knowledge, yet process or prove problems such
as this one.

4 New Capabilities

Here we present the most significant new capabilities implemented in Vampire
since 2013 [41]. Improvements to existing capabilities are in Section 5.

4.1 Arithmetic Reasoning

Reasoning about arithmetic in the presence of quantifiers is highly desirable. To
this end, Vampire implements the Abstracting Linear Arithmetic Superposition
Calculus (Alasca) [37] that combines ideas like inequality chaining, unification
with abstraction [51], and rewriting modulo linear arithmetic. Equality reasoning
in Alasca can be seen as applying the superposition calculus modulo the axioms
of linear arithmetic. For example, take step 18 of Figure 3. There, the literal
0 = x + sum(y) − sum(x# y) is used to perform a rewrite sum(x# y) ⇝ x +
sum(y) instead of a rewrite x + sum(y) − sum(x# y) ⇝ 0, which would be
the only permissible rewrite in standard superposition. In addition, Alasca
uses inequality chaining and dedicated factoring rules to deal with inequalities,
and combines variable elimination rules with unification with abstraction to
efficiently perform unification, modulo linear arithmetic.
Non-Linear Reasoning. Alasca itself supports reasoning in linear real arith-
metic with uninterpreted functions and quantifiers. Nonlinear problems are also

6 The Vampire Team

1. 0 = sum(ϵ) assumption 1 (cnf)
2. 0 = x+ sum(y)− sum(x# y) assumption 2 (cnf)
3. ϵ++x = x assumption 3 (cnf)
4. y#(z++x) = (y# z)++x assumption 4 (cnf)
5. 0 ̸= sum(σ1) + sum(σ0)− sum(σ1 ++σ0) conjecture (cnf)
6. 0 ̸= sum(σ3 #σ4) + sum(σ0)− sum((σ3 #σ4)++σ0)

∨ 0 ̸= sum(ϵ) + sum(σ0)− sum(ϵ++σ0)
structural induction 5

7. 0 = sum(σ4) + sum(σ0)− sum(σ4 ++σ0)
∨ 0 ̸= sum(ϵ) + sum(σ0)− sum(ϵ++σ0)

structural induction 5

8. 0 ̸= sum(σ0)− sum(σ3 #(σ4 ++σ0)) + sum(σ3 #σ4)
∨ 0 ̸= sum(σ0) + sum(ϵ)− sum(ϵ++σ0)

forward demodulation 6,4

9. 0 ̸= sum(σ0) + sum(ϵ)− sum(σ0)
∨ 0 = sum(σ0)− sum(σ4 ++σ0) + sum(σ4)

forward demodulation 7,3

10. 0 ̸= sum(ϵ)
∨ 0 = sum(σ0)− sum(σ4 ++σ0) + sum(σ4)

Alasca normalization 9

11. 0 ̸= sum(σ0) + sum(ϵ)− sum(σ0)
∨ 0 ̸= sum(σ0) + sum(σ3 #σ4)− sum(σ3 #(σ4 ++σ0))

forward demodulation 8,3

12. 0 ̸= sum(ϵ)
∨ 0 ̸= sum(σ0) + sum(σ3 #σ4)− sum(σ3 #(σ4 ++σ0))

Alasca normalization 11

13. 0 = sum(σ0)− sum(σ4 ++σ0) + sum(σ4) subsumption resolution 10,1
14. 0 ̸= sum(σ0) + sum(σ3 #σ4)− sum(σ3 #(σ4 ++σ0)) subsumption resolution 12,1
15. 0 ̸= sum(σ0) + sum(σ3 #σ4)− (σ3 + sum(σ4 ++σ0)) Alasca superposition 2,14
16. 0 ̸= sum(σ0)−σ3+sum(σ3#σ4)−(sum(σ0)+sum(σ4)) Alasca superposition 13,15
17. 0 ̸= σ3 − sum(σ3 #σ4) + sum(σ4) Alasca normalization 16
18. 0 ̸= σ3 − (σ3 + sum(σ4)) + sum(σ4) Alasca superposition 2,17
19. □ Alasca normalization 18

Fig. 3. Vampire’s proof output of the problem from Fig. 2 in mathematical notation.
The symbols σi are fresh Skolem constants. The induction steps are detailed in Sect. 4.2.

The Vampire Diary 7

supported by treating nonlinear multiplications as uninterpreted functions, au-
tomatically adding the relevant axiomatization.
Mixed Integer-Real Arithmetic. While the original Alasca work is limited
to real arithmetic, our current implementation in Vampire lifts these restric-
tions. We support reasoning in mixed integer-real arithmetic, using a tailored
quantifier-elimination procedure [56], as well as various new inference rules9 to
handle the combination of mixed arithmetic and uninterpreted functions by na-
tively supporting the rounding (floor) function.
Simplifications and Generalizations. In addition to Alasca, Vampire also
provides lightweight arithmetic reasoning [48]. This includes arithmetic subterm
generalization rules that complement Alasca reasoning, and other simplification
rules entailed by Alasca. Although these simplification rules are not as widely
applicable as Alasca, they provide for more lightweight and therefore efficient
arithmetic reasoning, sufficient for many practical problems. The generalization
rules include transformations like turning ∀x, y : R. P (3x+y) into the equivalent
clause ∀x : R. P (x).
Integrating SMT Solvers. Vampire sometimes hands off ground, that is
quantifier-free, arithmetic reasoning to the Z3 SMT solver [16]. This is done
either by invoking AVATAR modulo theories [47] (see Sect. 5.2) or by theory
instantiation [52]. Theory instantiation uses an SMT solver to find possible in-
stantiations of clauses based on their purely arithmetical literals. To illustrate,
consider the clause ∀x : Z. P (x)∨0 > 3x∨x ≥ 1. The SMT solver is queried for a
model satisfying ¬(0 > 3x∨ x ≥ 1), which is only the case for x = 0. The clause
is instantiated with {x 7→ 0} and simplified to P (0). Such integration of SMT
solvers enables using state-of-the-art developments in SMT and is particularly
beneficial for problem areas such as non-linear reasoning, for which Vampire
does not yet have dedicated calculi.

4.2 Inductive Reasoning

Vampire supports inductive reasoning [40] over literals with up to one free
variable.10 It applies induction by generating theory lemmas, triggered by de-
riving an eligible induction goal. Vampire supports structural induction over
inductively-defined datatypes [53], induction over bounded intervals of inte-
gers [29], and well-founded induction principles generated from recursive function
definitions [26]. Immediately after Vampire generates the induction lemmas, it
uses them to resolve their corresponding goals.

A distinctive feature of Vampire is that it seamlessly interleaves induction
with other inferences, efficiently handling hundreds of thousands of induction for-
mulas. This makes it possible to use more explosive lemma generation techniques
essential for solving some inductive problems. To synthesize lemmas, Vampire

9 The work on this inference system has not been published yet.
10 This covers the cases of a universally-quantified conjecture, and a conjecture with any

number of universally-quantified variables and one existentially-quantified variable.

8 The Vampire Team

can generalize over terms and term occurrences [23] or over multiple literals and
clauses [24], use function definitions [26] and perform general rewriting [25].

Let us highlight some key steps of the automated induction in Vampire
using the proof from Figure 3. First, when Vampire sees clause 5, it detects that
induction might be in order, as clause 5 corresponds to a universally-quantified
goal using an inductively-defined datatype. Therefore, Vampire uses clause 5 to
instantiate the structural induction axiom for lists,

L[ϵ] ∧ ∀x : α, y : [α].(L[y] → L[x# y]) → ∀z : [α].L[z],

by setting α := R and L[t] := 0 = sum(t) + sum(σ0) − sum(t++σ0). Note that
L[σ1] is set to be complementary to the literal from clause 5.

The instantiated axiom concludes that L[z] holds for any z : [R], while
clause 5 expresses that L[σ1] does not hold. To use this, Vampire converts the ax-
iom into CNF, obtaining clauses ¬L[ϵ]∨L[σ4]∨L[z] and ¬L[ϵ]∨¬L[σ3 #σ4]∨L[z],
where σ3, σ4 are Skolem constants corresponding to x and y, respectively. These
clauses together express that either the antecedent of the axiom does not hold
(the base case L[ϵ] does not hold, or for some σ3, σ4 we have L[σ4] but not
L[σ3 #σ4]), or the conclusion that L[z] is true for any z must hold. Then Vam-
pire applies binary resolution on these two clauses with clause 5, resolving away
L[z], and deriving clauses 6 and 7. Clauses 6 and 7 are exactly ¬L[ϵ]∨L[σ4] and
¬L[ϵ] ∨ ¬L[σ3 #σ4], spelled out in full in Figure 3. The rest of the proof then
covers the refutation of these two clauses.

4.3 Polymorphic Logic

Vampire now supports rank-1 polymorphic types [8] in the tradition of Standard
ML [44]. This represents a trade-off between expressivity and ease of implemen-
tation. Note that Vampire does not presently implement a sort inference routine
and all sorts in non-variable terms must be explicitly given as sort arguments [12],
which may themselves be variables. For example, the axiom sum(ϵ) = 0 is ac-
tually represented as sum(nil($real)) = 0, and ϵ++ ys = ys as concat(A,
nil(A), Ys) = Ys. The original motivation for introducing polymorphic logic
was supporting combinatory higher-order logic [7], but it has also proved useful
for supporting polymorphic theories such as arrays, and for verifying programs
that use parametric polymorphism.

4.4 Beyond First-Order Logic

Vampire supports extensions of first-order logic useful for software analysis
and verification. In particular, Vampire implements Fool [38], a conservative
extension of many-sorted first-order logic with if-then-else and let-in expressions,
which can be used to capture the next-state relation of loop-free programs [39].
As such, Vampire also supports first-class Boolean sorts, by encoding the axiom
∀x : o. x = 0 ∨ x = 1 as a new inference rule. The rule exploits the two-element
domain property of the Boolean sort without blowing up proof search.

The Vampire Diary 9

Higher-Order Logic. In addition, a branch of Vampire11implements a super-
position-based calculus tailored for higher-order logic [10], while still using the
general saturation framework from first-order logic. As higher-order unification
is undecidable, our implementation bypasses eager unification by performing
bounded-depth unification and introducing constraints for remaining unification
terms. This technique of constraint introduction has also been used in pure
first-order reasoning as delayed unification [9] and in arithmetic reasoning as
unification with abstraction [37,6].

4.5 Synthesis

We further utilize Vampire’s powerful proving capabilities to extend it to a pro-
gram synthesizer [28,27]. Vampire works with a relational input-output speci-
fication expressed in first-order logic, capturing “for all inputs x there exists an
output y such that a given relation between x and y holds”. In parallel to proving
this conjecture, Vampire constructs a program which computes the value of y
for any given value of x. To switch on synthesis mode, use -qa synthesis.12

5 Making It Work

Taking the above extensions into account, Vampire must now prove theorems in
a substantially richer logic with a much greater number of possible inferences. We
now describe improvements to Vampire’s core that we consider most important
for meeting this challenge and maintaining good performance in practice. This
adds to the observations of our previous tutorial paper [41], which remain valid.
We hope to provide useful information here for those readers who develop their
own reasoning systems.

5.1 Preprocessing

Computing normal forms and preprocessing remain of vital importance: the right
normal form can eliminate much search space or drastically shorten the required
proof. To this end Vampire has grown a new top-down clausal normal form
routine [50], lifted the blocked clause elimination technique [34] from SAT [31],
and adapted a highly effective goal-oriented rewriting technique from Twee [58].
As a general rule of thumb, preprocessing techniques have linear-time complexity,
and avoid recursion to prevent stack overflow on large inputs.

5.2 Integrating SAT and SMT

One of the tricks for efficiently tackling real-life problems in rich formalisms such
as first-order logic with theories is to look for sub-problems in simpler logics
11 https://github.com/vprover/vampire/tree/hol
12 While synthesis of recursion-free programs is available in the mainline Vampire,

synthesis of recursive programs is currently in the branch synthesis-recursive.

https://github.com/vprover/vampire/tree/hol

10 The Vampire Team

and offload them to dedicated tools. In this spirit, Vampire implements the
AVATAR architecture for clause splitting [68], which allows a prover to delegate
the “propositional essence” of the given problem to a SAT solver. In AVATAR
modulo theories [47], Vampire uses a finer abstraction13 and delegates ground
theory sub-problems to an SMT solver.

SAT solving is also applied within Vampire to find counterexamples to false
conjectures. Vampire now provides a MACE-style finite model building mode,
using a translation to SAT [14,49]. This is often a useful complement to theorem-
proving modes (provided that a small counter-model exists), which helps termi-
nate futile searches early and delivers useful insights in the form of bug traces.

5.3 Redundancy and Proof Search

Redundancy elimination is key to efficient proof search. Intuitively, a clause is
redundant if it is a logical consequence of smaller clauses from the search space:
checking whether a first-order clause is redundant is therefore undecidable in gen-
eral. Vampire implements cheap conditions for detecting some cases of redun-
dancy. The central technique used to implement these checks efficiently is term
indexing [46] and here in particular substitution trees [19] and code trees [54].
Code trees are used for rewriting clauses by unit equalities [26,25] and eliminat-
ing duplicate clauses, while substitution trees are used for other inferences. To
efficiently solve term ordering constraints in redundancy elimination, Vampire
uses term ordering diagrams, which offer runtime-specialized implementations of
simplification orderings [21]. Finally, Vampire also uses SAT solving to check
some redundancy conditions that can be modeled as at-most-one ground con-
straints over the Boolean structure of clause sets [15].

5.4 A Sea of Options, Strategies, and Schedules

By strategy we mean a particular configuration of Vampire’s option values.
Since the behavior of Vampire is controlled by more than 200 options, the
number of available strategies is vast. Although expert users may sometimes
have an idea of which options could be well suited to tackle a problem, the
prover’s behavior tends to be so chaotic [61] that even expert hunches often fail.
For this reason, Vampire provides schedules of pre-selected strategies executed
sequentially, possibly adapting to the given problem’s features.

Creating powerful schedules is a challenging problem. Since 2010, Vampire
has employed a dedicated support tool Spider [69] to construct schedules from a
set of training problems. Spider trials random strategies to solve as many training
problems as possible and eventually selects those strategies that complement
each other particularly well and lead to a schedule with good coverage and a
short overall runtime. Techniques have recently been developed to encourage
the generalization of the constructed schedule to unseen problems [5].

13 We remark that quantifiers are always handled natively by Vampire.

The Vampire Diary 11

Actively maintained schedules include casc and casc_sat, for general first-
order theorem proving and disproving, resp., referring to the famous champi-
onship [62]. Similarly, smtcomp has its origin in another competition [71] and is
optimized to work well on problems requiring theory reasoning. The higher-order
branch (Section 4.4) provides schedules for reasoning in higher-order logic and
the Sledgehammer [17] use-case. Finally, there is also induction and more.14

5.5 Branches

Some extensions to Vampire would have violent and extensive impact on the
code base. This is true of Vampire’s higher-order logic (HOL), for example.
Integrating the HOL extension into Vampire would be a significant amount of
work and impose a burden on all Vampire developers: but we would like it to
continue, as it is a world-leading system for higher-order logic. The way we are
currently dealing with this tension is by keeping this kind of feature on git
branches, which are periodically synchronised with mainline Vampire. When
a branch is widely-used enough, stable, and has a clear path to be integrated
cleanly with mainline Vampire, we may consider merging it: this has happened
in the past with rank-1 polymorphism and a previous approach to HOL [7].

6 Related Work and Conclusion

We have explained how best to use Vampire, discussed new features of Vam-
pire that better align saturation-based first-order theorem proving with software
verification, and described engineering required to make it work in practice.

As a first-order theorem prover with support for theories, induction and
higher-order logic, Vampire has been influenced by, competes with, and might
be variously compared to: SMT solvers such as cvc5 [2] or Z3 [16]; first-order
ATPs such as E [57], Spass [72], iProver [36], or Twee [58]; inductive theorem
provers such as ACL2 [33], HipSpec [13], or Zeno [59]; and higher-order ATPs
such as Zipperposition [70] or Leo-III [60]. Vampire distinguishes itself with its
native support for quantifiers combined with calculus extensions to reason about
theories, induction and higher-order logic, all tied together by highly-efficient
adaptive data structures and algorithms. Naturally, Vampire integrates SAT
and SMT solving for ground reasoning tasks.

This paper overviewed the main reasoning engines and practices Vampire
offers in order to assist users in understanding the many ways Vampire can be
integrated in other technologies. The system is under continuous development,
with new applications towards proof checking and extracting system code from
formal proofs. Further advances in creating tailored Vampire proof schedules
for proof assistants, for example in Isabelle’s Sledgehammer [17], are also under
active development.

14 Use --explain_option schedule to list schedules available from your Vampire.

12 The Vampire Team

Acknowledgements. We would like to thank all users and prior developers who
contributed to Vampire. We acknowledge the valuable Vampire contributions
made by Daneshvar Amrollahi, Ioan Dragan, Bernhard Gleiss, Bernhard Kragl,
Kryštof Hoder, Evgenii Kotelnikov, Alexandre Riazanov, Martin Riener, Simon
Robillard, Boris Shminke, and Eva Maria Wagner.

This research was funded in whole or in part by the ERC Consolidator Grant
ARTIST 101002685, the ERC Proof of Concept Grant LEARN 101213411, the
TU Wien Doctoral College SecInt, the FWF SpyCoDe Grant 10.55776/F85,
the WWTF grant [ForSmart Grant ID: 10.47379/ICT22007], and the Amazon
Research Award 2023 QuAT. Martin Suda was supported by the project CORE-
SENSE no. 101070254 under the Horizon Europe programme and by the Czech
Ministry of Education, Youth and Sports under the ERC CZ project POST-
MAN no. LL1902. Petra Hozzová was supported by the European Union under
the project ROBOPROX (reg. no. CZ.02.01.01/00/22_008/0004590).

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a Logical Framework based
on the λΠ-Calculus Modulo Theory. CoRR abs/2311.07185 (2023)

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A Versatile and Industrial-
Strength SMT Solver. In: TACAS. pp. 415–442 (2022)

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability modulo Theories
Competition. In: CAV. p. 20–23 (2005)

5. Bártek, F., Chvalovský, K., Suda, M.: Regularization in Spider-Style Strategy Dis-
covery and Schedule Construction. In: IJCAR. pp. 194–213 (2024)

6. Bhayat, A., Korovin, K., Kovács, L., Schoisswohl, J.: Refining Unification with
Abstraction. In: LPAR. pp. 36–47 (2023)

7. Bhayat, A., Reger, G.: A Combinator-Based Superposition Calculus for Higher-
Order Logic. In: IJCAR. pp. 278–296 (2020)

8. Bhayat, A., Reger, G.: A Polymorphic Vampire (Short Paper). In: IJCAR. pp.
361–368 (2020)

9. Bhayat, A., Schoisswohl, J., Rawson, M.: Superposition with Delayed Unification.
In: CADE. pp. 23–40 (2023)

10. Bhayat, A., Suda, M.: A Higher-Order Vampire (Short Paper). In: IJCAR. pp.
75–85 (2024)

11. Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., Pollitt, F.: Cadical
2.0. In: CAV. pp. 133–152 (2024). https://doi.org/10.1007/978-3-031-65627-9_7,
https://doi.org/10.1007/978-3-031-65627-9_7

https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/978-3-031-65627-9_7

The Vampire Diary 13

12. Blanchette, J.C., Paskevich, A.: TFF1: The TPTP Typed First-Order Form with
Rank-1 Polymorphism. In: CADE. pp. 414–420 (2013)

13. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating Inductive
Proofs Using Theory Exploration. In: CADE (2013)

14. Claessen, K., Sörensson, N.: New Techniques that Improve MACE-style Model
Finding. In: WS on Model Computation - Principles, Algorithms and Applications
(2003)

15. Coutelier, R., Rath, J., Rawson, M., Biere, A., Kovács, L.: SAT Solving for Variants
of First-Order Subsumption. Formal Methods in System Design (2024)

16. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS. pp. 337–340
(2008)

17. Desharnais, M., Vukmirović, P., Blanchette, J., Wenzel, M.: Seventeen Provers
Under the Hammer. In: ITP. pp. pp. 8:1–8:18 (2022)

18. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: SAT. pp. 502–518 (2003)
19. Graf, P.: Substitution Tree Indexing. In: RTA. pp. 117–131 (1995)
20. Granlund, T.: The GNU Multiple Precision Arithmetic Library (2023), https://

gmplib.org/gmp-man-6.3.0.pdf
21. Hajdu, M., Coutelier, R., Kovács, L., Voronkov, A.: Term Ordering Diagrams. In:

CADE (2025), to appear
22. Hajdu, M., Hozzová, P., Kovács, L., Reger, G., Voronkov, A.: Getting Saturated

with Induction. In: Principles of Systems Design. pp. 306–322 (2022)
23. Hajdu, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with

Generalization in Superposition Reasoning. In: CICM. pp. 123–137 (2020)
24. Hajdu, M., Kovacs, L., Rawson, M., Voronkov, A.: The Vampire Approach to

Induction. EasyChair Preprint no. 9217 (EasyChair, 2022)
25. Hajdu, M., Kovács, L., Rawson, M.: Rewriting and Inductive Reasoning. In: LPAR.

pp. 278–294 (2024)
26. Hajdu, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with Recursive Defi-

nitions in Superposition. In: FMCAD. pp. 1–10 (2021)
27. Hozzová, P., Amrollahi, D., Hajdu, M., Kovács, L., Voronkov, A., Wagner, E.M.:

Synthesis of Recursive Programs in Saturation. In: IJCAR. p. 154–171 (2024)
28. Hozzová, P., Kovács, L., Norman, C., Voronkov, A.: Program synthesis in satura-

tion. In: CADE. pp. 307–324 (2023)
29. Hozzová, P., Kovács, L., Voronkov, A.: Integer Induction in Saturation. In: CADE.

pp. 361–377 (2021)
30. ISO: ISO/IEC 14882:2017: Programming languages — C++. International Organi-

zation for Standardization, Geneva, Switzerland (Dec 2017)
31. Järvisalo, M., Biere, A., Heule, M.: Blocked Clause Elimination. In: TACAS. pp.

129–144 (2010)
32. Jeanteur, S., Kovács, L., Maffei, M., Rawson, M.: CryptoVampire: Automated

Reasoning for the Complete Symbolic Attacker Cryptographic Model. In: SP. pp.
3165–3183 (2024)

33. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach, vol. 3. Springer (06 2000). https://doi.org/10.1007/978-1-4615-4449-4

34. Kiesl, B., Suda, M., Seidl, M., Tompits, H., Biere, A.: Blocked Clauses in First-
Order Logic. In: LPAR. pp. 31–48 (2017)

35. Kitware, I.: CMake (2025), https://cmake.org/
36. Korovin, K.: iProver — An Instantiation-Based Theorem Prover for First-Order

Logic (System Description). In: IJCAR. pp. 292–298 (2008)
37. Korovin, K., Kovács, L., Reger, G., Schoisswohl, J., Voronkov, A.: ALASCA: Rea-

soning in Quantified Linear Arithmetic. In: TACAS. pp. 647–665 (2023)

https://gmplib.org/gmp-man-6.3.0.pdf
https://gmplib.org/gmp-man-6.3.0.pdf
https://doi.org/10.1007/978-1-4615-4449-4
https://cmake.org/

14 The Vampire Team

38. Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The Vampire and the FOOL.
In: CPP. pp. 37–48 (2016)

39. Kotelnikov, E., Kovács, L., Voronkov, A.: A FOOLish Encoding of the Next State
Relations of Imperative Programs. In: IJCAR. pp. 405–421 (2018)

40. Kovács, L., Hozzová, P., Hajdu, M., Voronkov, A.: Induction in Saturation. In:
IJCAR. pp. 21–29 (2024)

41. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: CAV.
pp. 1–35 (2013)

42. Lifschitz, V., Lühne, P., Schaub, T.: Towards Verifying Logic Programs in the
Input Language of clingo. In: Fields of Logic and Computation III. pp. 190–209
(2020)

43. Microsoft: Windows Subsystem for Linux (WSL), https://ubuntu.com/desktop/
wsl

44. Milner, R.: The Definition of Standard ML: Revised. MIT press (1997)
45. Racine, J.: The Cygwin Tools: a GNU Toolkit for Windows (2000)
46. Ramakrishnan, I.V., Sekar, R., Voronkov, A.: Term Indexing. In: Handbook of

Automated Reasoning, pp. 1853–1964. Elsevier and MIT Press (2001)
47. Reger, G., Bjørner, N.S., Suda, M., Voronkov, A.: AVATAR Modulo Theories. In:

GCAI. pp. 39–52 (2016)
48. Reger, G., Schoisswohl, J., Voronkov, A.: Making Theory Reasoning Simpler. In:

TACAS. pp. 164–180 (2021)
49. Reger, G., Suda, M., Voronkov, A.: Finding Finite Models in Multi-sorted First-

Order Logic. In: SAT. pp. 323–341 (2016)
50. Reger, G., Suda, M., Voronkov, A.: New Techniques in Clausal Form Generation.

In: GCAI. pp. 11–23 (2016)
51. Reger, G., Suda, M., Voronkov, A.: Unification with Abstraction and Theory In-

stantiation in Saturation-Based Reasoning. In: TACAS. pp. 3–22 (2018)
52. Reger, G., Suda, M., Voronkov, A.: Unification with Abstraction and Theory In-

stantiation in Saturation-Based Reasoning. In: TACAS. pp. 3–22 (2018)
53. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: CADE.

pp. 477–494 (2019)
54. Riazanov, A., Voronkov, A.: Partially Adaptive Code Trees. In: JELIA. pp. 209–223

(2000)
55. Rungta, N.: A Billion SMT Queries a Day (Invited Paper). In: CAV. pp. 3–18

(2022)
56. Schoisswohl, J., Kovács, L., Korovin, K.: VIRAS: Conflict-Driven Quantifier Elim-

ination for Integer-Real Arithmetic. In: LPAR. pp. 147–164 (2024)
57. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, Higher, Stronger: E 2.3. In: CADE.

pp. 495–507 (2019)
58. Smallbone, N.: Twee: An Equational Theorem Prover. In: CADE. pp. 602–613

(2021)
59. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An Automated Prover for

Properties of Recursive Data Structures. In: TACAS. pp. 407–421 (2012)
60. Steen, A., Benzmüller, C.: The Higher-Order Prover Leo-III. In: IJCAR. pp. 108–

116 (2018)
61. Suda, M.: Vampire Getting Noisy: Will Random Bits Help Conquer Chaos? (Sys-

tem Description). In: IJCAR. pp. 659–667 (2022)
62. Sutcliffe, G.: The CADE ATP System Competition - CASC. AI Magazine 37(2),

99–101 (2016)
63. Sutcliffe, G.: The Logic Languages of the TPTP World. Logic Journal of the IGPL

(2022). https://doi.org/10.1093/jigpal/jzac068

https://ubuntu.com/desktop/wsl
https://ubuntu.com/desktop/wsl
https://doi.org/10.1093/jigpal/jzac068

The Vampire Diary 15

64. Sutcliffe, G.: The 12th IJCAR Automated Theorem Proving System Com-
petition — CASC-J12. The European Journal on Artificial Intelligence 0(0),
30504554241305110 (0)

65. Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: LPAR
Workshops (2008)

66. Sutcliffe, G.: The TPTP World — Infrastructure for Automated Reasoning. In:
LPAR. pp. 1–12 (2010)

67. Tunney, J.: Cosmopolitan Libc (2025), https://justine.lol/cosmopolitan/
68. Voronkov, A.: AVATAR: The Architecture for First-Order Theorem Provers. In:

CAV. pp. 696–710 (2014)
69. Voronkov, A.: Spider: Learning in the Sea of Options (2023), https://easychair.

org/smart-program/Vampire23/2023-07-05.html#talk:223833
70. Vukmirovic, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret,

S.: Making Higher-Order Superposition Work. J. Autom. Reason. 66(4), 541–564
(2022)

71. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015-2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259
(2019), https://doi.org/10.3233/SAT190123

72. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS Version 3.5. In: CADE. pp. 140–145 (2009)

https://justine.lol/cosmopolitan/
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://easychair.org/smart-program/Vampire23/2023-07-05.html#talk:223833
https://doi.org/10.3233/SAT190123

	The Vampire Diary

