
Divide and Conquer:
A Compositional Approach to Game-Theoretic Security
IVANA BOCEVSKA, TU Wien, Austria
ANJA PETKOVIĆ KOMEL, Argot Collective, Switzerland
LAURA KOVÁCS, TU Wien, Austria
SOPHIE RAIN, Argot Collective, Switzerland
MICHAEL RAWSON, University of Southampton, United Kingdom

We propose a compositional approach to combine and scale automated reasoning in the static analysis of
decentralized system security, such as blockchains. Our focus lies in the game-theoretic security analysis of
such systems, allowing us to examine economic incentives behind user actions. In this context, it is particularly
important to certify that deviating from the intended, honest behavior of the decentralized protocol is not
beneficial: as long as users follow the protocol, they cannot be financially harmed, regardless of how others
behave. Such an economic analysis of blockchain protocols can be encoded as an automated reasoning problem
in the first-order theory of real arithmetic, reducing game-theoretic reasoning to satisfiability modulo theories
(SMT). However, analyzing an entire game-theoretic model (called a game) as a single SMT instance does not
scale to protocols with millions of interactions. We address this challenge and propose a divide-and-conquer
security analysis based on compositional reasoning over games. Our compositional analysis is incremental:
we divide games into subgames such that changes to one subgame do not necessitate re-analyzing the entire
game, but only the ancestor nodes. Our approach is sound, complete, and effective: combining the security
properties of subgames yields security of the entire game. Experimental results show that compositional
reasoning discovers intra-game properties and errors while scaling to games with millions of nodes, enabling
security analysis of large protocols.

CCS Concepts: • Theory of computation→Automated reasoning;Algorithmic game theory; • Security
and privacy→ Logic and verification; Distributed systems security.

Additional Key Words and Phrases: Game Theory, Security, SMT Solving, Automated Reasoning

ACM Reference Format:

Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson. 2025. Divide and
Conquer: A Compositional Approach to Game-Theoretic Security. Proc. ACM Program. Lang. 9, OOPSLA2,
Article 342 (October 2025), 26 pages. https://doi.org/10.1145/3763120

1 Introduction
Decentralized systems based on blockchain technology, such as cryptocurrencies [Nakamoto 2009]
and decentralized finance [Buterin 2014], are in need of security guarantees. Establishing such
guarantees is usually first approached by the formal static analysis of the underlying cryptographic
protocols [Blanchet 2014; Kobeissi et al. 2020; Meier et al. 2013; Wang et al. 2020]. Then, game-
theoretic security analysis [Rain et al. 2023; Zappalà et al. 2020] is employed to ensure economic
incentives in a protocol align with intended functional outcomes. The latter ensures malicious
Authors’ Contact Information: Ivana Bocevska, TU Wien, Vienna, Austria, ivana.bocevska@tuwien.ac.at; Anja Petković
Komel, Argot Collective, Zug, Switzerland, anja@argot.org; Laura Kovács, TU Wien, Vienna, Austria, laura.kovacs@tuwien.
ac.at; Sophie Rain, Argot Collective, Zug, Switzerland, sophie.rain@argot.org; Michael Rawson, University of Southampton,
Southampton, United Kingdom, michael@rawsons.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART342
https://doi.org/10.1145/3763120

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

https://doi.org/10.1145/3763120
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763120

342:2 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

actions and security attacks can be prevented via punishment mechanisms. This paper scales and
improves game-theoretic security with satisfiability modulo theory (SMT) solving over blockchain
security. We were motivated by the compositional static analysis in [Blackshear et al. 2018].

Recent work shows that automatic analysis of game-theoretic models (called games) is tractable
via SMT solving in first-order real arithmetic. In particular, game-theoretic analysis is reduced to
solving a single large SMT instance [Brugger et al. 2023]. However, this style of automated analysis
has inherent limitations. A major problem is scalability: game models of large protocols are huge,
yielding enormous SMT instances that cannot be solved in reasonable time. Another challenge is
game-theoretic modeling: it is much more convenient to reason about protocol parts/phases in a
modular, independent manner and compose their results into results over the entire protocol. Such
convenience becomes even more pronounced in the presence of repeated phases.

This paper addresses the aforementioned challenges and introduces a compositional approach to
game-theoretic security (Section 5). Given a protocol, we study its parts independently (as subgames),
analyze the subgames’ security, and combine their results to enforce security of the game that models
the entire protocol. In other words, we perform a divide-and-conquer approach for game-theoretic
security analysis, whose automation is feasible via SMT solving (Section 6). Game modeling is not
in the scope of this paper, but interleaving the modeling and the analysis of a game, as shown in
Section 7, makes it feasible to verify even complex real-world models with over 100 million nodes.
Compositional reasoning is, however, not trivial, as illustrated by Example 4.1, which shows

that SMT queries may not be naïvely split into subqueries, as constraints in one may interact
with constraints in another (Section 4). Further, a security result of a subgame cannot be simply
propagated upwards, as in our experiments, we have encountered all four possible scenarios: a
subgame is not secure, but the entire game is, and vice-versa; both subgame and entire game are
secure; both are not secure. Our divide-and-conquer approach provides a theoretically sound and
complete way to decompose reasoning into fine-grained SMT queries over subgames (Theorem 6.4).

To the best of our knowledge, our approach is the first compositional method for game-theoretic
security. We implement our work as an extension of the CheckMate tool [Rain et al. 2024], resulting
in our CheckMate2.0 framework1. While our approach in this paper is illustrated via a simple
example, our experiments demonstrate that divide-and-conquer reasoning in CheckMate2.0
enables game-theoretic analysis even for complex real-world protocols with millions of nodes.
Compositional reasoning allows us, thus, to scale game-theoretic security analysis to large code
bases, improving the efficiency of automated security analysis in general.

1.1 Setting and Wider Application
Game theory provides a rich formalism for reasoning about systems and their economics. Here we
work with extensive-form games, which are essentially fixed finite trees where each branch has
an associated player. Playing these games involves a traversal of the tree from root to leaf, with
players deciding which branch they wish to take. At the end of a game, each player receives a utility:
this could be a number or a symbolic expression like 2𝑐 + 𝑑 . Game-theoretic security considers a
subset of possible traversals honest and aims to ensure that honest behavior is compatible with
economic incentives present in a game. It has been shown that if a game enjoys a handful of
properties, it amounts to game-theoretic security [Rain et al. 2023]. Automated reasoning tools for
game-theoretic security ingest a game and attempt to (dis)prove its security.

While the main motivation of our work comes from blockchain verification, our framework can
be used for arbitrary (extensive-form) game-theoretic models of any kind of turn-based interaction,
such as computer security in a wider sense, correctness of concurrent and distributed systems,

1 https://github.com/apre-group/checkmate/releases/tag/OOPSLA25

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

https://github.com/apre-group/checkmate/releases/tag/OOPSLA25

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:3

argumentation, negotiation, or even the design and analysis of board games. To showcase this
claim we provide the following example.

Example 1.1. Suppose that a bank concurrently executes two procedures concerning the same
customer. (1) A credit check requests the total amount held by the customer, who has both a savings
and a current account. This requires two reads: (1a) the present value of the current account,
(1b) the present value of the savings account. (2) The customer has requested regular automated
transfers of money from the current account to a savings account. This requires two writes: (2a)
debit the current account, (2b) credit the savings account. There are two hazards: the sequence
1a-2a-2b-1b overreports the customer’s total amount (higher utility), while the sequence 2a-1a-1b-2b
underreports it (lower utility). All other sequences report a correct total (“honest” (actual) utility).
This can be modeled as a game, where analyzing game-theoretic security includes checking that no
interleaving reports an incorrect total (utility). Here, without some kind of transaction control, this
is violated and our framework can enumerate both possible serializations where this occurs.

1.2 Our Contributions.
We bring the following contributions2.
• We introduce a compositional framework for game-theoretic security analysis (Section 5). Our
framework defines player-dependent notions of security properties, which in turn enables
divide-and-conquer reasoning over games. We divide games into subgames while ensuring
that the resulting reasoning is both sound and complete.
• We advocate divide-and-conquer algorithmic reasoning to automate compositional modeling
and security analysis (Section 6). We interleave subgame and supergame (parent game) rea-
soning, by using the security result of a subgame within leaves of their respective supergames.
• Our compositional framework naturally supports the generation of counterexamples if security
properties are violated. Moreover, we revise game preconditions in order to strengthen and
enforce security. When security is established, we extract a game strategy as a proven security
certificate (Sections 6.2 and 6.3).
• We implement compositional game reasoning in the CheckMate2.0 tool. Our experiments
show that compositionality significantly improves runtime and supports efficient case-
splitting over symbolic game utilities (Section 7), enabling verification of real-world protocols.

Outline. This paper is structured as follows. Section 2 introduces common game-theoretic con-
cepts relevant to our work. Section 3 summarizes the notion of game-theoretic security, including
security properties, quantification over utilities, and counterexamples, as largely defined by previ-
ous work [Brugger et al. 2023; Rain et al. 2023; Zappalà et al. 2020]. Section 4 briefly shows the
complexity of our work before our contributions are presented in Sections 5 to 7 as listed above.

2 Preliminaries
We assume familiarity with standard first-order logic [Smullyan 1995] and real arithmetic in the
context of SMT solving [Barrett and Tinelli 2018; Bjørner and Nachmanson 2024]. We next introduce
common game-theoretic concepts relevant to our work.
A game is a finite object with finitely many players. Players choose from a finite set of actions

until the game ends, whereupon they receive a utility. The focus is on perfect information Extensive
Form Games (EFGs) [Osborne and Rubinstein 1994] in which the actions are chosen sequentially
with full knowledge of all previous actions. Games may yield collective benefit or loss, i.e. they are
not necessarily zero-sum.
2Formal proofs of all our claims can be found in [Bocevska et al. 2025a].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:4 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

𝑀

(0, 𝑝)

𝑛

𝐸

(𝑝/2, 𝑝/2)

𝑖

(−𝑎,−𝑎)

𝑝𝑤

𝑒

Fig. 1. Market Entry Game Γ𝑚𝑒 , with 𝑎, 𝑝 > 0. Utility tuples state𝑀’s utility first, 𝐸’s second.

Definition 2.1 (Extensive Form Game — EFG). An extensive form game Γ = (𝑁,𝐺) is determined by
a finite non-empty set of players𝑁 together with a finite tree𝐺 = (𝑉 , 𝐸). A game pathℎ = (𝑒1, ..., 𝑒𝑛),
with 𝑒𝑖 ∈ 𝐸, that starts from the root of𝐺 is called a history. We denote the set of historiesℋ. There
is a bijection between nodes 𝑣 ∈ 𝑉 and histories ℎ ∈ℋ that lead to these nodes.
• A history that leads to a leaf is called terminal and belongs to the set of terminal histories
𝒯 ⊆ℋ. Terminal histories 𝑡 are associated with a utility for each player.
• Non-terminal histories are those histories that are not terminal. Non-terminal histories ℎ
have assigned a next player denoted as 𝑃 (ℎ) ∈ 𝑁 . Player 𝑃 (ℎ) chooses from the set 𝐴(ℎ) of
possible actions following ℎ.

Definition 2.2 (Honest History). In an EFG Γ, we call a terminal history honest, denoted by ℎ∗, if it
represents expected behavior in Γ. An EFG Γ can have many honest histories; security analysis
over Γ is always performed relative to a chosen and fixed honest history (see Section 3.1).

Example 2.3 (Market Entry Game). Consider the Market Entry game Γ𝑚𝑒 of Figure 1. This game
has been chosen for its simplicity to ease readability; our approach can, however, be applied to
real-world examples, as shown in Section 7. The Market Entry game Γ𝑚𝑒 has two players: 𝑀
representing a new company and 𝐸 an established company. At the root, it is the turn of player
𝑃 (∅) = 𝑀 to choose from actions 𝐴(∅) = {𝑛, 𝑒}. Action 𝑛 represents not entering the market,
producing a terminal history (𝑛) where𝑀 gets 0 utility and 𝐸 gets all of the profits 𝑝 > 0. Action 𝑒
represents entering the market, in which case 𝐸 can respond by either ignoring this move and thus
splitting profits equally, or by entering a price war that damages both players.

Utilities in game theory are usually numeric constants. We generalize utilities to symbolic terms
in real arithmetic and thus encode all possible values within given constraints. Variables and
numeric constants are evaluated over the real numbers extended by a finite set of infinitesimals,
closer to zero than any real number. Infinitesimals model subjective (in)conveniences that do
not relate directly to funds, such as opportunity cost. We model infinitesimals with terms over
R × R, ordered lexicographically: the first component represents the real part, the second the
infinitesimal. We write real for the first projection and avoid writing pairs, using 𝑎, 𝑏, 𝑐 . . . for real
variables, and 𝛼, 𝛽,𝛾, . . . for infinitesimals. The utility term 𝑎 + 𝛼 − 𝜀 is therefore represented as
(𝑎, 0) + (0, 𝛼) − (0, 𝜀) = (𝑎, 𝛼 − 𝜀).

Example 2.4. We could modify the Market Entry game from Figure 1 by adding an infinitesimal
𝛼 > 0 to the utility of player𝑀 at (𝑒, 𝑖). Player𝑀’s new utility 𝑝

2 + 𝛼 at leaf (𝑒, 𝑖), then represents
half of the profit 𝑝 and the additional benefit of entering the market 𝛼 , as𝑀 is motivated to establish
a new entity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:5

To formulate game-theoretic security properties, we need the following definitions for EFGs.

Definition 2.5 (EFG Properties). Let Γ = (𝑁,𝐺) be an EFG.
Strategy A strategy 𝜎 for a group of players 𝑆 ⊆ 𝑁 is a function mapping non-terminal histories

ℎ ∈ℋ \𝒯, where one of the players in group 𝑆 has a turn 𝑃 (ℎ) ∈ 𝑆 , to the possible actions
𝐴(ℎ). We write 𝒮𝑆 for the set of strategies for group 𝑆 , and 𝒮 for 𝒮𝑁 which we call joint
strategies. We refer to the union of strategies with disjoint domains as a combined strategy
and denote it as a tuple. To combine e.g. 𝜎𝑆 ∈ 𝒮𝑆 and 𝜏𝑁−𝑆 ∈ 𝒮𝑁−𝑆 , we write (𝜎𝑆 , 𝜏𝑁−𝑆) ∈ 𝒮.

Resulting History The resulting terminal history 𝐻 (𝜎) of a joint strategy 𝜎 ∈ 𝒮 is the unique
history obtained by following chosen actions in 𝜎 from root to leaf.

Following Honest History A strategy for a player 𝑝 follows the honest history ℎ∗ if, at every
node along the honest history, where 𝑝 is making a choice, the strategy chooses the action
in ℎ∗. For every other node, there is no constraint.

Utility Function The utility function𝑢𝑝 (𝜎) assigns to player 𝑝 ∈ 𝑁 their utility at the resulting
terminal history of the joint strategy 𝜎 ∈ 𝒮, that is 𝑢𝑝 (𝜎) := 𝑢𝑝 (𝐻 (𝜎)). We sometimes write
all player utilities for a joint strategy 𝜎 ∈ 𝒮 as 𝑢 (𝜎), denoting a tuple of size |𝑁 |.

Subgame Subgames Γ|ℎ of Γ are formed from the same set 𝑁 of players and a subtree of𝐺 , and
are therefore identified by the history ℎ leading to the subtree𝐺 |ℎ . A history 𝑡 ∈ℋ|ℎ of Γ|ℎ is
a suffix of a history (ℎ, 𝑡) ∈ℋ, a strategy 𝜎 ∈ 𝒮|ℎ of Γ|ℎ is a restriction of a strategy 𝜏 ∈ 𝒮 to
the nodes in G |ℎ , that is 𝜏 |ℎ = 𝜎 , and the utility function 𝑢 |ℎ of Γ|ℎ assigns each joint strategy
𝜎 ∈ 𝒮|ℎ the utility of the yielded leaf 𝑢 |ℎ (𝜎) := 𝑢 (ℎ, 𝐻 (𝜎)). This includes trivial subgames:
leaves or the entire tree Γ at the empty history.

Supergame If ℎ′ is a prefix of ℎ, Γ|ℎ′ is a supergame of Γ|ℎ .
Subgame along/off Honest History Let ℎ∗ be the honest history. A subgame Γ|ℎ is along the

honest history iff ℎ is a prefix of ℎ∗; that is, there is a history 𝑔 ∈ℋ|ℎ in the subtree such that
(ℎ,𝑔) = ℎ∗. Otherwise, Γ|ℎ is off the honest history.

Intuitively, a subgame is the part of the game that is still to be played after some actions have
been taken already. A supergame of a subgame is any game tree that embeds the subgame as the
subtree. For the sake of readability, we use the following simplifications. From now on we use
subgame/subtree and supergame/supertree interchangeably. We write 𝑢 (𝜎𝑆 , 𝜏𝑁−𝑆) := 𝑢 ((𝜎𝑆 , 𝜏𝑁−𝑆))
for the combined strategy (𝜎𝑆 , 𝜏𝑁−𝑆) ∈ 𝒮. For history 𝑘 ∈ℋ, we write 𝑘 |ℎ to express the suffix of
𝑘 after ℎ, that is (ℎ, 𝑘 |ℎ) = 𝑘 .

Example 2.6. Consider again the Market Entry game Γ𝑚𝑒 in Figure 1. A joint strategy 𝜏 ∈ 𝒮 could
have𝑀 taking action 𝑛 initially, and player 𝐸 taking 𝑖 after (𝑒).𝑀 ’s (single) strategy 𝜏𝑀 ∈ 𝒮𝑀 takes
action 𝑛 at the root. Joint strategy 𝜏 yields utility 𝑢𝐸 (𝜏) = 𝑝 for player 𝐸. The history resulting from
𝜏 is (𝑛).

The subgame Γ𝑚𝑒 | (𝑒) after history (𝑒) is indicated by dashed lines in Figure 1. It has players
{𝑀, 𝐸} and a tree where 𝐸 must choose between action 𝑖 with utility (𝑝2 ,

𝑝

2) and action 𝑝𝑤 with
utility (−𝑎,−𝑎). Considering honest history (𝑛) the subtree Γ𝑚𝑒 | (𝑒) is off the honest history, whereas
the trivial subtree Γ𝑚𝑒 | (𝑛) after action 𝑛 is along the honest history.
The Market Entry game has 2 × 2 = 4 joint strategies as𝑀 chooses from two possible actions,

and independently also 𝐸 picks one action out of two.

3 Game-Theoretic Security Properties
Our work models real-life protocols as extensive form games (EFGs). Subsequently, we reduce the
security analysis of a protocol to the game-theoretic security analysis of its corresponding EFG.
According to [Zappalà et al. 2020] an adversary could execute an attack in a protocol for personal

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:6 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

gain or harming somebody. Therefore, we consider a protocol to be game-theoretically secure if the
following properties hold:
(P1) Byzantine Fault-Tolerance. Even in the presence of adversaries, honest players do not

suffer loss. That is, in a secure protocol an honest player will not receive negative utility,
independent of others’ behavior. Therefore, there are no “attacks” where somebody is harmed.

(P2) Incentive Compatibility. Rational agents do not deviate from the honest behavior, as it
yields the best payoff. Hence, in a secure protocol, a rational “attacker” is behaving honestly
and no adversary gets personal gain by deviation.

3.1 Security Properties for Subgames
As elaborated in [Rain et al. 2023], the high-level properties (P1) and (P2) can be ensured through
the game-theoretic concepts weak(er) immunity, collusion resilience, and practicality. Property (P1)
is ensured by weak(er) immunity and (P2) by collusion resilience and practicality. We take the
definitions of these security properties as posed in [Brugger et al. 2023], and adapt them for any
subtree of Γ, to accommodate a compositional game-theoretic approach (Section 5). Note that the
definitions coincide when the entire game Γ is taken as the subtree.

Since we allow symbolic utilities, we do not necessarily know their ordering, respectively relation
to zero. This knowledge is however needed to evaluate the security properties. This is why, in
this subsection, we assume a total order on the symbolic utility terms. We will lift this assumption
in Section 3.2.

Definition 3.1 (Weak Immunity). A subtree Γ|ℎ of game Γ with honest history ℎ∗ is weak immune,
if a strategy 𝜎 ∈ 𝒮|ℎ exists such that all players 𝑝 following 𝜎 always receive non-negative utility:

∃𝜎 ∈ 𝒮|ℎ .∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ . 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0 . (wi(Γ|ℎ))

If ℎ is along ℎ∗, additionally 𝐻 |ℎ (𝜎) = ℎ∗|ℎ has to hold.

Example 3.2. The Market Entry game from Figure 1 with honest history (𝑛) is weak immune:
according to Definition 3.1 we look at the trivial subtree Γ𝑚𝑒 , after the empty history ℎ = ∅. Since
the empty history is always along the honest history, following the last sentence of Definition 3.1,
the desired strategy 𝜎 has to yield the honest history (𝑛). If𝑀 behaves honestly both players get a
nonnegative utility; if𝑀 deviates via 𝑒 , player 𝐸 can choose action 𝑖 and obtains a positive utility
𝑝

2 . Hence, the witness strategy 𝜎 assigns action 𝑛 to the empty history: 𝜎 (∅) = 𝑛, and action 𝑖 to
history (𝑛): 𝜎 ((𝑛)) = 𝑖 .

Sometimes, weak immunity is too restrictive and we take weaker immunity to ensure (P1).

Definition 3.3 (Weaker Immunity). A subtree Γ|ℎ of game Γ with honest history ℎ∗ is weaker
immune, if there exists a strategy 𝜎 ∈ 𝒮|ℎ , such that all players 𝑝 that follow 𝜎 always receive at
least a negative infinitesimal:

∃𝜎 ∈ 𝒮|ℎ .∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ . real(𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝)) ≥ 0 . (weri(Γ|ℎ))

If ℎ is along ℎ∗, additionally 𝐻 |ℎ (𝜎) = ℎ∗|ℎ .

Next, the property of collusion resilience requires the honest behavior to yield the best payoff,
even in the presence of collusion.

Definition 3.4 (Collusion Resilience). A subtree Γ|ℎ of the game Γ with honest history ℎ∗ is collusion
resilient if there exists a strategy 𝜎 ∈ 𝒮|ℎ such that no strict subgroup of players can deviate to

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:7

receive a joint utility greater than their joint honest utility:

∃𝜎 ∈ 𝒮|ℎ .∀𝑆 ⊂ 𝑁 ∀𝜏 ∈ 𝒮|ℎ .
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆) . (cr(Γ|ℎ))

If ℎ is along ℎ∗, also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ has to hold.

Note that the collusion resilience of a subtree according to the above definition depends on the
honest utility, the utility resulting from the honest history in the entire game Γ. The node containing
the honest utility is not necessarily part of the considered subtree. We also note that we only check
for strict subgroups 𝑆 ⊂ 𝑁 , since if the entire group of players is colluding, no player gets harmed3.

Example 3.5. Consider again the Market Entry game from Figure 1 with the honest history (𝑛).
This is collusion resilient: we can take actions 𝑛 for player 𝑀 and 𝑝𝑤 for player 𝐸. Since it is a
two-player game, the colluding group of players can only be a singleton. If𝑀 deviates from the
honest behavior, they get utility −𝑎, which is less than 0 in the honest case. If 𝐸 deviates, the history
is not affected, since𝑀 chooses action 𝑛. Thus, the game is collusion resilient.

Note that this is not what one would usually do; it is just a toy example to show what collusion
resilience can protect from: It guarantees that the honest participants have a way to keep others
from maliciously increasing their profit. The rationality of the honest choices is ensured through
the next property practicality.

The next property of practicality ensures that, for all player decisions, the honest behavior is
also “greedy”: if all players act selfishly, that is they maximize their own utilities, the honest choice
yields the best utility.

Definition 3.6 (Practicality). A subtree Γ|ℎ of the game Γ with honest history ℎ∗ is practical, if
there exists a strategy 𝜎 ∈ 𝒮|ℎ such that no player can deviate in any subtree to receive a strictly
greater utility in the subtree:

∃𝜎 ∈ 𝒮|ℎ ∀𝑔 ∈ℋ|ℎ ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮| (ℎ,𝑔) . 𝑢 |𝑔,𝑝 (𝜎 |𝑔) ≥ 𝑢 |𝑔,𝑝 (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) . (pr(Γ|ℎ))

If ℎ is along ℎ∗, also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ has to hold.

Example 3.7. The Market Entry game from Figure 1 with the honest history (𝑛) is not practical.
Player 𝐸 should choose 𝑖 , as it yields a better utility. It is then not practical for𝑀 to choose 𝑛, as it
yields utility 0, whereas action 𝑒 yields the better utility 𝑝

2 .

We finally note that every subtree Γ|ℎ of a game Γ that is off the honest history is always practical.4

Example 3.8. Consider the Market Entry subgame after the non-terminal history (𝑒), marked by
teal dashed lines in Figure 1. We can always choose the action that yields the best utility for the
current player 𝐸. The only way we can violate practicality is by having the best choice conflicting
with the honest choice, which cannot happen when the subtree is off honest history.

The definitions weak(er) immunity, collusion resilience, and practicality can be extended to
strategies and terminal histories in the following way.

3If the entire group of players 𝑁 is colluding and getting a better utility, this could happen for several reasons. There could
be lower subjective values, like less opportunity costs, smaller waiting times, etc.; or the players could harm the system,
for example by conjuring coins out of thin air. Since our work is checking harm to other players, this kind of a check is
currently out of scope, but could be a potentially useful extension.
4This is also formally proven in [Bocevska et al. 2025a].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:8 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Definition 3.9 (Security Properties of Strategies and Histories). A strategy 𝜎 ∈ 𝒮 of a game Γ is
weak(er) immune, collusion resilient, or practical, iff it can serve as the witness strategy in (wi(Γ|ℎ)),
(weri(Γ|ℎ)), (cr(Γ|ℎ)), or (pr(Γ|ℎ)), respectively.

A terminal history 𝑡 ∈ 𝒯 of the game Γ is weak(er) immune, collusion resilient, or practical, iff
there exists a strategy 𝜎 ∈ 𝒮 that has the respective property and the resulting history of 𝜎 is 𝑡 ,
that is 𝐻 (𝜎) = 𝑡 .

Together, these properties define game-theoretic security:

Definition 3.10 (Game-Theoretic Security). A game Γ with honest history ℎ∗ is game-theoretically
secure if it is weak immune, collusion resilient, and practical.

In some applications, minor inconveniences can be neglected, and the notion of game-theoretic
security can be weakened to weaker immunity, collusion resilience, and practicality.

Remark. Definition 3.10 implies that the listed security properties are not just any properties.
They are the security properties that are sufficient to ensure game-theoretic security of game
models as introduced and justified in [Rain et al. 2023].

In a protocol there can be several intended behaviors, corresponding to different honest histories.
Those can be iteratively checked for security. Further, for an honest history we may get different
strategies for different security properties. If a player deviated from the honest choice, the other
players can choose among those strategies, depending on which attack they are defending against.

3.2 Total Orders
Similarly to [Brugger et al. 2023], in order to lift the assumption that we know how all utility terms
relate, we make the security analysis relative to a finite set 𝐶 of initial constraints on the symbolic
variables appearing in the utility terms and explicitly universally quantify over the variables, as
follows

∀®𝑥 .
(∧
𝑐∈𝐶

𝑐 [®𝑥]
)
→ ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ 𝑠𝑝 (𝜎) [®𝑥] , (1)

where ®𝑥 = (𝑥1, . . . , 𝑥ℓ) are the real/infinitesimal variables occurring in the utility terms 𝑇𝑢 and
𝑠𝑝 (𝜎) is the formula of a security property 𝑠𝑝 ∈ {𝑤𝑖,𝑤𝑒𝑟𝑖, 𝑐𝑟, 𝑝𝑟 } after existential quantification of
the strategy: E.g. for weak immunity 𝑤𝑖 (𝜎) = ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ . 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0, and similarly
for the other properties.
Furthermore, to efficiently handle the comparison of symbolic utilities in an SMT solver, we

implement an equivalent version of the above formula by considering all consistent total orders ⪯
over the set 𝑇𝑢 of utility terms appearing in the game Γ.

Theorem 3.11 (Game-Theoretic Security with Total Orders). For an EFG Γ with honest
history ℎ∗ and a finite set of initial constraints 𝐶 , property (1) is equivalent to

∀(⪯,𝑇𝑢) ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀®𝑥 .
(∧
𝑐∈𝐶∪⪯

𝑐 [®𝑥]
)
→ 𝑠𝑝 (𝜎) [®𝑥] . (2)

3.3 Counterexamples
If a game violates a security property – that means if there is no joint strategy satisfying the security
property – we can investigate why: Counterexamples serve the important purpose of providing
attack vectors and thus pinpointing weaknesses of a protocol underlying the game model.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:9

Counterexamples to Weak(er) Immunity. For the weak(er) immunity property, a counterex-
ample is a harmed honest player 𝑝 and a partial strategy of the other players 𝑁 − 𝑝 such that no
matter what honest actions player 𝑝 chooses, 𝑝 receives negative utility.

Definition 3.12 (Counterexamples to Weak(er) Immunity). Let Γ be an EFG and ℎ∗ the considered
honest history. A counterexample to ℎ∗ being weak(er) immune is a player 𝑝 together with a partial
strategy 𝑠𝑁−𝑝 of the other players 𝑁 − 𝑝 such that 𝑠𝑁−𝑝 combined with any strategy 𝜎𝑝 of player 𝑝
that follows the honest history ℎ∗, yields a terminal history 𝐻 (𝑠𝑁−𝑝 , 𝜎𝑝) = 𝑡𝜎𝑝 with 𝑢𝑝 (𝑡𝜎𝑝) < 0
(resp. for weaker immunity real(𝑢𝑝 (𝑡𝜎𝑝)) < 0) and 𝑠𝑁−𝑝 is minimal with that property.

Minimality of the partial strategy 𝑠𝑁−𝑝 states that, if any information point 𝑠𝑁−𝑝 (ℎ) = 𝑎 is
removed, there exists a strategy 𝜎𝑝 of player 𝑝 such that (𝜎𝑝 , 𝑠′𝑁−𝑝) does not yield a terminal history,
where 𝑠′

𝑁−𝑝 is 𝑠𝑁−𝑝 without assigning action 𝑎 to history ℎ. That is, when following only actions of
(𝜎𝑝 , 𝑠′𝑁−𝑝), we get stuck at an internal node of the tree.

Example 3.13. A counterexample to the weak immunity of the Market Entry game of Figure 1
with the (for this example considered) honest history (𝑒, 𝑖) would be player𝑀 and a partial strategy
for 𝐸, where they choose action 𝑝𝑤 . If𝑀 behaves honestly and chooses action 𝑒 , they end up with
the negative utility of −𝑎 after the terminal history (𝑒, 𝑝𝑤).

Counterexample to Collusion Resilience. A counterexample to collusion resilience consists
of a group of deviating players 𝑆 and their partial strategy 𝑠𝑆 ∈ 𝒮, such that the joint utility of 𝑆
is better than their joint honest utility, no matter how the other players 𝑁 − 𝑆 react, while still
following the honest history.

Definition 3.14 (Counterexamples to Collusion Resilience). Let Γ be an EFG and ℎ∗ the considered
honest history. A counterexample to ℎ∗ being collusion resilient is a set of deviating players 𝑆 together
with a partial strategy 𝑠𝑆 of players 𝑆 such that 𝑠𝑆 extended by any strategy 𝜎𝑁−𝑆 of players 𝑁 − 𝑆 ,
which follows the honest history ℎ∗, yields a terminal history 𝐻 (𝜎𝑁−𝑆 , 𝑠𝑆) = 𝑡𝜎𝑁 −𝑆 with∑︁

𝑝∈𝑆
𝑢𝑝 (𝑡𝜎𝑁 −𝑆) >

∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗)

and 𝑠𝑆 is minimal with that property. The minimality of 𝑠𝑆 is similar to the minimality of the partial
strategy for weak(er) immunity.

Example 3.15. In the Market Entry game of Figure 1, a counterexample to the (for this example
considered) honest history (𝑒, 𝑝𝑤) being collusion resilient is the deviating group {𝐸} with the
partial strategy that takes action 𝑖 after history (𝑒). Since the honest player𝑀 can only take action
𝑒 (while being honest), the deviating utility for 𝐸 is 𝑝

2 , which is greater than the honest one −𝑎.
Counterexamples to Practicality. Intuitively, a counterexample to practicality of the honest

history ℎ∗ has to provide a reason why a rational player would not follow ℎ∗. At some point along
ℎ∗ after a prefix ℎ, there is an action 𝑎 promising the current player 𝑃 (ℎ) a strictly better utility
than ℎ∗. That means in the subgame Γ| (ℎ,𝑎) after (ℎ, 𝑎) all practical terminal histories yield a utility
for player 𝑃 (ℎ) that is better than their honest one. Otherwise, other rational players would choose
actions in Γ| (ℎ,𝑎) which disincentivize 𝑃 (ℎ) to deviate from ℎ∗.

Definition 3.16 (Counterexamples to Practicality). For an EFG Γ and honest history ℎ∗, a coun-
terexample to practicality of ℎ∗ is a prefix ℎ of ℎ∗ together with an action 𝑎 ∈ 𝐴(ℎ), such that for all
practical terminal histories 𝑡 in the subgame Γ| (ℎ,𝑎) it holds that 𝑢𝑃 (ℎ) (ℎ∗) < 𝑢𝑃 (ℎ) ((ℎ, 𝑎, 𝑡)).

Example 3.17. Recall that the Market Entry game Γ𝑚𝑒 from Figure 1 with the honest history (𝑛)
is not practical. A counterexample to practicality is the empty prefix ℎ = ∅ and the action 𝑒 , as the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:10 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

𝑀

(0, 𝑝)

𝑛

𝐸

(𝑝/2, 𝑝/2)

𝑖

(−𝑎,−𝑎)

𝑝𝑤

𝑒

𝑀

(0, 𝑝)

𝑛

¬wi

𝑒

Fig. 2. Naive Compositionality of Weak Immunity for Market Entry Game Γ𝑚𝑒 , 𝑎, 𝑝 > 0.

only practical terminal history in Γ𝑚𝑒 | (𝑒) is (𝑖) which yields 𝑝

2 for player 𝑀 , which is strictly better
than the 0 in the honest case.

4 Unsound Naïve Approach to Compositionality
For a divide-and-conquer style of compositional game-theoretic security analysis, we would like to
analyze a game tree by propagating security results of subtrees upwards to the parent/ancestor
nodes of the supertree. However, naïvely propagating the yes/no security result of the subtree does
not suffice, as shown in Example 4.1.

Example 4.1. Consider the Market Entry game Γ𝑚𝑒 (Example 2.3) reproduced on the left-hand side
of Figure 2, with honest history (𝑛). Example 3.2 shows this game is weak immune. Now consider
a naïve compositional approach looking at the subgame after non-terminal history (𝑒), marked
by teal dashed lines. Since player 𝐸 can take action 𝑝𝑤 — leading to negative utility for𝑀 — this
subtree is not weak immune. To mimic a naïve compositionality approach, we replace the subtree
after (𝑒) by ¬wi, shown on the right. Asked whether this supertree is weak immune, one would
say no, as𝑀 could deviate from the honest history via 𝑒 , which leads to a subtree that is not weak
immune. This is, however, an incorrect conclusion since the Market Entry game is weak immune
for the honest history (𝑛), as shown in Example 3.2.

The main reason why the naïve approach above fails is that we need more information to be
able to propagate a result from a subtree to its parent, namely that the subtree is not weak immune
only for player𝑀 . In the parent, player𝑀 can achieve weak immunity by behaving honestly and
choosing action 𝑛, ensuring weak immunity of the entire game tree. Similar additional information
(see Theorem 5.7) is needed for the other security properties: collusion resilience requires which
colluding groups the subtree is secure against; practicality requires the utilities resulting from
terminal histories that are practical in the subtree (practical utilities). We now show that propagating
this information yields a sound and complete compositional approach to game-theoretic security.

5 Compositional Game-Theoretic Security
Our compositional framework for game-theoretic security analysis is materialized via two crucial
components:
(1) Stratified analysis of security properties over players, capturing player-wise security proper-

ties (Section 5.1).
(2) Splitting player-wise security properties into subgames, enabling us to propagate subgame

reasoning for deriving supergame security (Section 5.2).
For simplicity, we assume a total order ⪯ on the occurring utility terms𝑇𝑢 in order to relate symbolic
game utilities. As before, this assumption is relaxed in Section 6, generalizing our approach.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:11

5.1 Security Properties Stratified over Players
We start with the following observation. While Example 4.1 shows that there are no implications
of subtree and supertree results in general, subtrees along the honest history can in fact soundly
pass negative (not secure) results up to their parents.

Theorem 5.1 (Eqivalence of Non-Secure Games). A game Γ with honest history ℎ∗ violates
one of the security properties of weak(er) immunity, collusion resilience, or practicality iff there exists a
history ℎ along the honest history ℎ∗ such that Γ|ℎ violates the respective security property.

Intuitively, the honest history ℎ∗ “enforces” a path down the tree Γ: when a non-secure subtree
Γ|ℎ is encountered along this path, there is no way to compensate for it. Theorem 5.1, however,
only propagates non-secure properties along the honest history. To allow for all analysis results
to propagate from subgames to supergames, we stratify game-theoretic security analysis over indi-
vidual players. This means we can analyze the security properties for a player (weak immunity:
Definition 5.2, practicality: Definition 5.5), or player group (collusion resilience: Definition 5.4) at a
time, without interfering with results of other players or groups (Theorem 5.6).

Definition 5.2 (Weak Immunity for a Player). A subgame Γ|ℎ with honest history ℎ∗ is weak
immune for player 𝑝 ∈ 𝑁 , if there exists a strategy 𝜎 ∈ 𝒮|ℎ such that no matter to which strategy
𝜏 ∈ 𝒮|ℎ other players deviate, 𝑝’s utility will be non-negative and, if ℎ is along ℎ∗, then also
𝐻 |ℎ (𝜎) = ℎ∗|ℎ :

∃𝜎 ∈ 𝒮|ℎ . (ℎ along ℎ∗ → 𝐻 |ℎ (𝜎) = ℎ∗|ℎ) ∧ (wi𝑝 (Γ|ℎ))
∀𝜏 ∈ 𝒮|ℎ . 𝑢 |ℎ,𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0 .

An analogous definition applies to weaker immunity.

Example 5.3 (Player-Wise Weak Immunity). Let us revisit the Market Entry game Γ𝑚𝑒 with honest
history (𝑛) from Figure 1, considering one player at a time. The first player is𝑀 . The subgame Γ𝑚𝑒 | (𝑒)
after history (𝑒) is not weak immune for𝑀 , since 𝐸 could take action 𝑝𝑤 . Towards compositional
reasoning, we try propagating this result to the supertree Γ𝑚𝑒 . It leads to correctly reporting weak
immunity for𝑀 : as𝑀 will honestly take action 𝑛, we avoid Γ𝑚𝑒 | (𝑒) .
For 𝐸, Γ𝑚𝑒 | (𝑒) is weak immune as action 𝑖 can always be chosen, yielding positive utility. We

again try propagating this result, and also here conclude correctly that Γ𝑚𝑒 is weak immune for
𝐸: all choices of 𝑀 (whom we do not assume to be honest in the analysis of 𝐸), lead to either
non-negative utility for 𝐸 or to a subtree which is weak immune for 𝐸.

The definition for collusion resilience against a given player group is similar to Definition 5.2, by
lifting the quantifier over the player subgroups 𝑆 ⊂ 𝑁 to the front of the formula.

Definition 5.4 (Collusion Resilience against a Player Group). A subgame Γ|ℎ of game Γ with honest
history ℎ∗ is collusion resilient against a group of players 𝑆 ⊂ 𝑁 , if there exists a strategy 𝜎 ∈ 𝒮|ℎ
such that no matter to which strategy 𝜏 ∈ 𝒮|ℎ the players in 𝑆 deviate, their joint utility will be not
greater than their honest joint utility and, if ℎ is along ℎ∗, then also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ :

∃𝜎 ∈ 𝒮|ℎ . (ℎ along ℎ∗ → 𝐻 |ℎ (𝜎) = ℎ∗|ℎ) ∧ (cr𝑆 (Γ|ℎ))

∀𝜏 ∈ 𝒮|ℎ .
∑︁
𝑝∈𝑆

𝑢 |ℎ,𝑝 (𝜎) ≥ 𝑢 |ℎ,𝑝 (𝜏𝑆 , 𝜎𝑁−𝑆) .

Defining practicality for a single player, though, requires slight changes: instead of considering
an arbitrary player 𝑝 , we define practicality for that player whose turn it is in the considered
subtree.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:12 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Definition 5.5 (Practicality for the Current Player). A subgame Γ|ℎ of a game Γ with honest history
ℎ∗ is practical for the current player, if there exists a strategy 𝜎 ∈ 𝒮|ℎ such that in each further
subtree Γ| (ℎ,𝑔) no matter to which strategy 𝜏 ∈ 𝒮| (ℎ,𝑔) the current player 𝑃 (ℎ,𝑔) deviates, the utility
of 𝑃 (ℎ,𝑔) in the subtree will not increase strictly and, if ℎ is along ℎ∗, then also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ :

∃𝜎 ∈ 𝒮|ℎ . (ℎ along ℎ∗ → 𝐻 |ℎ (𝜎) = ℎ∗|ℎ) ∧ ∀𝑔 ∈ℋ|ℎ ∀𝜏 ∈ 𝒮| (ℎ,𝑔) . (pr𝑃 (Γ|ℎ))
𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎 |𝑔) ≥ 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜏𝑃 (ℎ,𝑔) , 𝜎 |𝑔,𝑁−𝑃 (ℎ,𝑔)) .

We now state our first crucial result towards compositionality: stratification of security analysis
over players.

Theorem 5.6 (Player-Wise Security Properties). A game Γ satisfies a security property iff it
satisfies the respective security property player-wise. That is, the following equivalences hold:

(1) Γ weak immune⇔∀𝑝 ∈ 𝑁 . Γ weak immune for 𝑝 .
(2) Γ weaker immune⇔∀𝑝 ∈ 𝑁 . Γ weaker immune for 𝑝 .
(3) Γ collusion resilient⇔∀𝑆 ⊂ 𝑁 . Γ collusion resilient against 𝑆 .
(4) Γ practical⇔ Γ practical for the current player.

5.2 Splitting and Combining Player-Wise Security Properties
Theorem 5.6 proves that the security analysis of a game can be carried out player-wise, instead of
analyzing interactions between all (groups of) players. We now show that not only players can
be treated individually, but (super)game security can also be split into subgame security. That is,
the security of a supergame can be proven by proving player-wise security over subgames. This
implies compositional game-theoretic security is sound and complete.

Theorem 5.7 (Compositional Game-Theoretic Security). The game-theoretic security of an
EFG Γ with honest history ℎ∗ can be computed compositionally. That is, the only information needed
of a subtree Γ|ℎ , to decide whether Γ satisfies security property is

• for weak(er) immunity: for which players 𝑝 ∈ 𝑁 the subtree Γ|ℎ is weak(er) immune;
• for collusion resilience: against which player groups 𝑆 ⊂ 𝑁 the subtree Γ|ℎ is collusion resilient;
• for practicality:
– if ℎ is along ℎ∗: whether ℎ∗|ℎ is practical in Γ|ℎ ;
– if ℎ is not along ℎ∗: the set U(ℎ) containing all practical utilities of Γ|ℎ

5. A utility 𝑢 (𝑡) after
terminal history 𝑡 ∈ 𝒯 is practical in subgame Γ|ℎ iff 𝑡 is practical in Γ|ℎ .

Theorems 5.8, 5.10 and 5.12 establish how to compositionally compute player-wise security for
each security property, yielding a constructive proof of Theorem 5.7.

Theorem 5.8 (Compositional Weak Immunity). Let Γ be an EFG with honest history ℎ∗ and
𝑝 ∈ 𝑁 a player. The following hold.

(1) A leaf of Γ is weak immune for 𝑝 iff 𝑝’s utility is non-negative:

∀𝑡 ∈ 𝒯. 𝑤𝑖𝑝 (Γ|𝑡) ⇔ 𝑢𝑝 (𝑡) ≥ 0 .

(2) A branch of Γ is weak immune for 𝑝 , where 𝑝 is not the current player, iff all children are weak
immune for 𝑝 :

∀ℎ ∈ℋ \𝒯. 𝑝 ≠ 𝑃 (ℎ) ⇒
(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ ∀𝑎 ∈ 𝐴(ℎ).𝑤𝑖𝑝 (Γ| (ℎ,𝑎))

)
.

5The set U(ℎ) is introduced properly in the paragraph before Theorem 5.12.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:13

(3) A branch of Γ along the honest history ℎ∗ is weak immune for the current player 𝑝 , iff the child
following ℎ∗ is weak immune for 𝑝 . Let 𝑎∗ ∈ 𝐴(ℎ) be the honest choice, i.e. (ℎ, 𝑎∗) along ℎ∗, then:

∀ℎ ∈ℋ \𝒯. 𝑝 = 𝑃 (ℎ) ∧ ℎ along ℎ∗ ⇒
(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ 𝑤𝑖𝑝 (Γ| (ℎ,𝑎∗))

)
.

(4) A branch of Γ off the honest history ℎ∗ is weak immune for the current player 𝑝 , iff there exists
a child that is weak immune for 𝑝 :

∀ℎ ∈ℋ \𝒯. 𝑝 = 𝑃 (ℎ) ∧ ℎ off ℎ∗ ⇒
(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ ∃𝑎 ∈ 𝐴(ℎ). 𝑤𝑖𝑝 (Γ| (ℎ,𝑎))

)
.

Similar results to Theorem 5.8 hold for weaker immunity.

Example 5.9 (Compositional Weak Immunity). We revisit the Market Entry game Γ𝑚𝑒 of Figure 1,
with honest history (𝑛). We compute that Γ𝑚𝑒 is weak immune using our compositional approach,
where we stratify over players first and then split Γ𝑚𝑒 into subtrees.

We start with player𝑀 . Theorem 5.8 implies that Γ𝑚𝑒 is weak immune for𝑀 iff Γ𝑚𝑒 | (𝑛) is weak
immune for𝑀 ; since Γ𝑚𝑒 | (𝑛) is a leaf, we must check that the utility of𝑀 is non-negative, i.e. 0 ≥ 0.
As this is true, game Γ𝑚𝑒 is weak immune for𝑀 .

Next, 𝐸. According to Theorem 5.8, the game Γ𝑚𝑒 is weak immune iff Γ𝑚𝑒 | (𝑛) and Γ𝑚𝑒 | (𝑒) are weak
immune for 𝐸. The subgame Γ𝑚𝑒 | (𝑛) is weak immune for 𝐸 if their utility is non-negative, i.e. 𝑝 ≥ 0,
true by assumption. The subtree Γ𝑚𝑒 | (𝑒) is now weak immune for 𝐸 iff either Γ𝑚𝑒 | (𝑒,𝑖) or Γ𝑚𝑒 | (𝑒,𝑝𝑤)
is. 𝐸’s utility at Γ𝑚𝑒 | (𝑒,𝑖) is 𝑝/2 ≥ 0. Therefore Γ𝑚𝑒 is weak immune for 𝐸, and from Theorem 5.6 it
follows that Γ𝑚𝑒 is weak immune.

Theorem 5.10 (Compositional Collusion Resilience). Let Γ be an EFG with honest history ℎ∗

and honest utility 𝑢∗ = 𝑢 (ℎ∗). The following equivalences hold.
(1) A leaf of Γ is collusion resilient against 𝑆 ⊂ 𝑁 iff the honest joint utility of the deviating players

𝑝 ∈ 𝑆 is greater than or equal to their joint utility at that leaf:

∀𝑡 ∈ 𝒯. 𝑐𝑟𝑆 (Γ|𝑡) ⇔
∑︁
𝑝∈𝑆

𝑢∗𝑝 ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) .

(2) A branch of Γ, where the current player is in the deviating group 𝑆 ⊂ 𝑁 , is collusion resilient
against 𝑆 iff all children are collusion resilient against 𝑆 :

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∈ 𝑆 ⇒
(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ ∀𝑎 ∈ 𝐴(ℎ). 𝑐𝑟𝑆 (Γ| (ℎ,𝑎))

)
.

(3) A branch of Γ along the honest history ℎ∗, where the current player is not in the deviating group
𝑆 ⊂ 𝑁 , is collusion resilient against 𝑆 iff the child following ℎ∗ is collusion resilient against 𝑆 .
Let 𝑎∗ ∈ 𝐴(ℎ) be the honest action, i.e. (ℎ, 𝑎∗) along ℎ∗, then:

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∉ 𝑆 ∧ ℎ along ℎ∗ ⇒
(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ 𝑐𝑟𝑆 (Γ| (ℎ,𝑎∗))

)
.

(4) A branch of Γ off the honest history ℎ∗, where the current player is not in the deviating group
𝑆 ⊂ 𝑁 , is collusion resilient against 𝑆 iff there exists a child that is collusion resilient against 𝑆 :

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∉ 𝑆 ∧ ℎ off ℎ∗ ⇒
(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ ∃𝑎 ∈ 𝐴(ℎ). 𝑐𝑟𝑆 (Γ| (ℎ,𝑎))

)
.

Note that, if a player is in a deviating group, all child subtrees need to be collusion resilient even
if we are along honest history, as the deviator might choose any action and potentially harm honest
players. In contrast, for an honest player and a node off honest history, there needs to merely exist
one collusion resilient child that the player can choose to defend against the deviating group.

Example 5.11 (Compositional Collusion Resilience). We compositionally compute the collusion
resilience of the Market Entry game Γ𝑚𝑒 (Figure 1) with honest history (𝑛). We have two possible
colluding groups, both singletons {𝑀} and {𝐸}.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:14 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Consider {𝑀}. At the root of Γ𝑚𝑒 , since the player 𝑀 is in the colluding group, all subtrees
must be collusion resilient against {𝑀}. Along the honest history we reach a leaf Γ𝑚𝑒 | (𝑛) , which is
collusion resilient (it is the honest leaf). For subtree Γ𝑚𝑒 | (𝑒) there needs to exist a collusion resilient
child, which is the case in the leaf after (𝑒, 𝑝𝑤): utility −𝑎 is strictly smaller than the honest utility
0.

Next, {𝐸}. At the root,𝑀 is not in the deviating group. Hence, only the honest child Γ𝑚𝑒 | (𝑛) need
be collusion resilient against {𝐸}, which it is, as it is the honest leaf; so the utility is equal to the
honest one in part (1) of Theorem 5.10. This suffices to establish collusion resilience against {𝐸};
checking Γ𝑚𝑒 | (𝑒) is unnecessary.

Using Theorem 5.6, it follows that Γ𝑚𝑒 is collusion resilient.

While we only have to remember boolean values of subtrees (i.e. whether it satisfies the property)
to compositionally compute weak(er) immunity and collusion resilience per player(group), we need
more information when reasoning about practicality: To correctly assess whether a tree is practical,
one has to know the utility tuples of all practical terminal histories of its subtrees. For a given
subtree Γ|ℎ with practical terminal histories {𝑡1, . . . , 𝑡𝑛}, we define the set of practical utilities U(ℎ)
as U(ℎ) := {𝑢 |ℎ (𝑡𝑖) : 𝑖 = 1, . . . , 𝑛}.

Theorem 5.12 (Compositional Practicality). Let Γ be an EFG with honest history ℎ∗ and U(ℎ)
be the set of practical utilities of subtree Γ|ℎ . Let 𝑢∗ be the honest utility 𝑢∗ = 𝑢 (ℎ∗). Then the following
identities and equivalences hold.
(1) In a leaf of Γ the only practical utility is that of the leaf.

∀𝑡 ∈ 𝒯. U(𝑡) = {𝑢 (𝑡)} .
(2) The honest utility 𝑢∗ is practical in a branch of Γ along ℎ∗ iff it is practical in the child following

ℎ∗ and if for every other child at least one practical utility is not greater than 𝑢∗ for the current
player. Let 𝑎∗ ∈ 𝐴(ℎ) be the honest action after ℎ, then:

∀ℎ ∈ℋ \𝒯. ℎ along ℎ∗ ⇒
(
𝑝𝑟 (Γ|ℎ) ⇔

𝑝𝑟 (Γ| (ℎ,𝑎∗)) ∧ ∀𝑎 ∈ 𝐴(ℎ) \ {𝑎∗} ∃𝑢 ∈ U((ℎ, 𝑎)). 𝑢∗𝑃 (ℎ) ≥ 𝑢𝑃 (ℎ)
)
.

(3) A utility is practical in a branch of Γ off the honest history ℎ∗ iff it is practical in a child and if,
for every other child, at least one practical utility is not greater for the current player.

∀ℎ ∈ℋ \𝒯. ℎ off ℎ∗ ⇒
(
∀𝑡 ∈ 𝒯|ℎ . 𝑢 (𝑡) ∈ U(ℎ) ⇔

∃𝑎 ∈ 𝐴(ℎ). 𝑢 (𝑡) ∈ U((ℎ, 𝑎)) ∧
∀𝑎′ ∈ 𝐴(ℎ) \ {𝑎} ∃𝑢′ ∈ U((ℎ, 𝑎′)) . 𝑢𝑃 (ℎ) (𝑡) ≥ 𝑢′

𝑃 (ℎ)
)
.

Example 5.13 (Compositional Practicality). To compositionally compute the practicality of the
Market Entry game Γ𝑚𝑒 of Figure 1 with honest history (𝑛), we start with the leaves of the tree,
where the practical utilities are the utilities of the leaves. Moving upwards in the tree, we look at
the subtree Γ𝑚𝑒 | (𝑒) , which is off the honest history, so we take the better utility for player 𝐸, setting
U(𝑒) = {(𝑝2 ,

𝑝

2)}. At the root of the tree, which is along the honest history, the practical utility of
the honest subtree (0, 𝑝) should be practical. Since all practical utilities of the non-honest child
(there is just one) are better for player𝑀 (as 𝑝

2 > 0), the honest utility is not practical. Theorems 5.6
and 5.12 then imply that Γ𝑚𝑒 is not practical.

6 Automating Compositional Security Analysis
Section 5 assumed a total order ⪯ on game utility terms 𝑇𝑢 . This section lifts this fixed ordering
constraint and interprets the game variables in the utility terms 𝑇𝑢 as real-valued variables ®𝑥 , as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:15

explained in Section 3.2. Theorem 3.11 showed that quantification of the variables ®𝑥 can be done
equivalently by grouping values of ®𝑥 that satisfy the same total order (⪯,𝑇𝑢). In this section we
combine this result with Theorem 5.6 and further pull the security property quantifications (over
players, subgames and strategies) out of the variable ®𝑥 quantification, as they are independent. For
weak immunity, for example, the formula (1) (with 𝑠𝑝 = 𝑤𝑖) becomes equivalent to:

∀(⪯,𝑇𝑢) ∀𝑝 ∈ 𝑁 ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀𝜏 ∈ 𝒮 .

∀®𝑥 .
(∧
𝑐∈𝐶∪⪯

𝑐 [®𝑥]
)
→ 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) [®𝑥] ≥ 0 . (3)

This mapping of game-theoretic security from Theorem 3.11 to the player-wise security of Theo-
rem 5.6 is crucial for automating compositional security: we only forward relatively small first-order
expressions of the form

∀®𝑥 .
(∧
𝑐∈𝐶∪⪯

𝑐 [®𝑥]
)
→ 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥] , (4)

to an SMT solver, where 𝑢𝑡1 and 𝑢𝑡2 are term expressions over ®𝑥 ; checking such formulas is very
feasible for SMT solvers.

As usual, to check whether (4) is a theorem, the property is first negated, and then an SMT solver is
used to check satisfiability. This is where the simplified quantified structure of (4) becomes especially
friendly for automation: The SMT solving of (4) happens in a purely existential fragment, for which
efficient decision procedures exist [Barrett and Tinelli 2018; Bjørner and Nachmanson 2024]. The
remaining reasoning in (3), about the players and the existence of strategies 𝜎 witnessing player-
wise security, is performed using the compositional security results of Theorems 5.8, 5.10 and 5.12,
without burdening the SMT solver. Such an interplay between SMT solving and compositional
security eases automation, as illustrated below and detailed further in Section 6.1.

Example 6.1 (SMT Reasoning for Compositional Security). Revisiting the Market Entry game Γ𝑚𝑒 of
Figure 1, we study the SMT formulae resulting from (4), given initial constraints𝐶 = {𝑎 > 0, 𝑝 > 0}.
All symbolic utility terms occurring in the security properties of Γ𝑚𝑒 are already totally ordered
by the constraints in 𝐶 . Hence, the only relevant total order ⪯ here that is consistent with 𝐶 is
−𝑎 ≺ 0 ≺ 𝑝/2 ≺ 𝑝 .

To analyze, for example, the weak immunity of the Market Entry game for player 𝐸 composition-
ally, we follow the algorithm induced by Theorem 5.8. Starting at the root, we observe that we are
not at a leaf and 𝐸 is not the current player. Thus, by Theorem 5.8 it follows that we need to make
sure that the subgames after history (𝑛) and (𝑒) are both weak immune for player 𝐸. The SMT
reasoning is only needed when we reach a leaf, such as the one after history (𝑛). The resulting
SMT query is

∀𝑎, 𝑝. 𝑎 > 0 ∧ 𝑝 > 0→ 𝑝 ≥ 0 ,
which is trivially valid. Hence, the subtree after history (𝑛) is weak immune for 𝐸 for all allowed
utility values. The analysis for the subgame after history (𝑒) can be performed in an analogous
way. Finally, we can combine the results for both subtrees to obtain the result for the supertree.
In this manner, the inductive approach allows us to reduce reasoning about secure strategies to
reasoning about utility terms in the leaves of the game tree.

6.1 Divide-and-Conquer Algorithms for Compositional Security
Our compositionality results from Theorem 5.6 and Theorems 5.8, 5.10 and 5.12, extended by a lazy
total-order approach, induce a divide-and-conquer approach for splitting and combining reasoning

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:16 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

over game subtrees and supertrees. Our overall divide-and-conquer framework for automating
compositional game-theoretic reasoning is summarized in Algorithm 1, which in turn relies upon
Algorithm 2 as well as upon Algorithms 3 to 5 from [Bocevska et al. 2025a]. We compositionally
compute the game-theoretic security of a protocol, analyzing the (protocol model) game for all
real-valued variables ®𝑥 of utitilty terms𝑇𝑢 , considering all total orders ⪯ at once. If we fail, we split
the total orders into multiple cases, unless we can conclude that the respective security property
cannot be satisfied even if we restrict the values of ®𝑥 to one total order ⪯. The case split we consider
is induced by an SMT query as in property (4) when some but not all ®𝑥 satisfy the implication. We
then split into total orders that enforce 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥], respectively 𝑢𝑡1 [®𝑥] < 𝑢𝑡2 [®𝑥], in (4).

Algorithm 1: Function SatisfiesProperty for Compositional Game-Theoretic Security
Reasoning.

input : input instance Π = (Γ, 𝑖𝑛𝑓 ,𝐶), honest history ℎ∗, the name of a security property
𝑠𝑝 ∈ {𝑤𝑖,𝑤𝑒𝑟𝑖, 𝑐𝑟, 𝑝𝑟 }, and the currently analyzed case (as set of SMT constraints) case.

output :true if Π satisfies 𝑠𝑝 in case case, false otherwise

1 S← ∅
2 AddConstraints (S, 𝐶 ∪ case)
3 result← true

4 split← null

5 for pg ∈ RelevantGroups(Π, sp) do
6 (resultpg, splitpg)← ComputeSP (Π,ℎ∗,S,𝑠𝑝 ,pg)
7 if resultpg = false then
8 result← resultpg

9 split← splitpg

10 break

11 end

12 end

13 if result = true then

14 return true

15 end

16 if split = null then

17 return false

18 end

19 for constr ∈ {split,¬split} do
20 if ¬SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, case ∪ {constr}) then
21 return false

22 end

23 end

24 return true

Algorithm 1: Function SatisfiesProperty. In Algorithm 1 an instance Π, which contains
the game tree Γ, the set of infinitesimal variables 𝑖𝑛𝑓 (as introduced in Section 2), and the set of
initial constraints𝐶 , is given as input. The input to Algorithm 1 also contains the honest history ℎ∗,
the security property to be analyzed, and the currently considered case case.
The function SatisfiesProperty in Algorithm 1 is called initially with the empty case to

analyze all total orders. This case can be refined throughout Algorithm 1, using case splits. Hence,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:17

in the first call of the function, the set S, representing the constraints handed to an SMT solver,
contains only the initial constraints 𝐶 . The relevant player groups RelevantGroups of security
property 𝑠𝑝 are set according to the stratified definitions of 𝑠𝑝 from Section 5.1: 𝑁 for𝑤 (𝑒𝑟)𝑖 , as
we stratify over players; 2𝑁 \ {∅, 𝑁 } for 𝑐𝑟 , as we stratify over deviating subgroups; and {“none”}
for 𝑝𝑟 .

The function ComputeSP in line 6 of Algorithm 1 stands for ComputeWI, ComputeCR or ComputePR ,
depending on the security property 𝑠𝑝 , as summarized in [Bocevska et al. 2025a]. The result of
ComputeSP depends on whether Γ with honest history ℎ∗ satisfies property 𝑠𝑝 for/against pg, given
the constraints in S. Here, we also keep track of utility comparisons we cannot decide. Importantly,
the constraint 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥] to whether Γ satisfies 𝑠𝑝 in case is returned as split

pg
, if it exists.

The loop in lines 5–12 of Algorithm 1 incorporates player-wise security from Theorem 5.6. It
additionally provides a necessary case split if the security property is violated for a player group.
Subsequently, the respective results are returned: true for all groups yields true; false but nothing
to split on for at least one group yields false; and false together with a split leads to further case
splits (lines 19–24). If we split the total orders into multiple cases, all the cases have to return true
for the property to be satisfied.

Example 6.2. Let us revisit the Market Entry game from Example 2.3, but this time let us assume
only 𝑝 > 0 is the initial constraint and 𝑎 ∈ R can take any value. We check whether the honest
history (𝑛) is collusion resilient. Algorithm 1 will in line 5 consider each singleton player group
individually, suppose we start with {𝑀}. The function ComputeCR, specified in Algorithm 4 in
[Bocevska et al. 2025a], returns (false, 0 ≥ −𝑎), as the comparison between 0 and −𝑎 is missing to
determine collusion resilience. So the result is set to false and split to 0 ≥ −𝑎. For the colluding
group {𝐸} the function ComputeCR returns (true, null), as the honest player 𝑀 can choose a
collusion resilient honest action. Algorithm 1 then proceeds with line 19, refining the constraints by
first adding 0 ≥ −𝑎 to the case. The function SafisfiesPropertywill return true (and empty split);
and then adding the negated constraint 0 < −𝑎 to the case, at which point SafisfiesProperty
will return false, since𝑀 can profit by deviating from the honest action (𝑛), as both 𝑝

2 and −𝑎 are
better utilities than 0. Algorithm 1 thus terminates by returning false.

The security-property-specific function variants of ComputeSP recursively apply the composi-
tional results of Theorem 5.7. To illustrate case splitting of total orders, we only describe function
ComputeWI of Algorithm 2 below.

Algorithm 2: Function ComputeWI. The function ComputeWI of Algorithm 2 is initially called
with the entire game tree Γ from function SatisfiesProperty of Algorithm 1. We then proceed
recursively, according to Theorem 5.8. Note that the player group pg is just one player.

In a leaf, GetUtility in Algorithm 2 returns 𝑢𝑡 (®𝑥) as the utility of player pg. We then – in line
2 of Algorithm 2 – check whether the constraints in S together with 𝑢𝑡 (®𝑥) < 0 are unsat. This is
equivalent to the constraints in S implying 𝑢𝑡 (®𝑥) ≥ 0, which is an instance of property (4), except
that we do not (necessarily) have one total order ⪯ at hand, only some constraints from case. If
the implication holds, we return true. Otherwise, we check the opposite condition, by asking in
line 5 of Algorithm 2 whether

∀®𝑥 .
∧

𝑐∈𝐶∪case
𝑐 [®𝑥] → 𝑢𝑡 [®𝑥] < 0 (5)

holds. If it does (line 6), the leaf is not weak immune. Otherwise (line 8), the leaf’s weak immunity
depends on the total order, which induces a case split on 𝑢𝑡 [®𝑥] ≥ 0.

At a branch (lines 10–32 of Algorithm 2), we check in which of the cases of Theorem 5.8 we are.
We then call the function ComputeWI recursively on immediate subgames Γ| (𝑎) and propagate the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:18 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Algorithm 2: Function ComputeWI for Weak Immunity.
input :game tree Γ, honest history ℎ∗, set S containing initial constraints and current case, player

group pg.
output : (result, split), where result states whether Γ is weak immune for pg, given S, and split a

crucial utility comparison we cannot decide.

1 if isLeaf(Γ) then
2 if Check(S, GetUtility(Γ, pg) < 0) = unsat then

3 return (true, null)
4 end

5 if Check(S, GetUtility(Γ, pg) ≥ 0) = unsat then

6 return (false, null)
7 end

8 return (false, GetUtility(Γ, pg) ≥ 0)
9 end

10 if CurrentPlayer(Γ) ≠ pg then

11 for 𝑎 ∈ Actions(Γ) do
12 (result, split) ← ComputeWI(Γ| (𝑎) , ℎ∗, S, pg)
13 if result = false then

14 return (result, split)
15 end

16 end

17 return (true, null)
18 end

19 if AlongHonest(Γ, ℎ∗) then
20 𝑎∗ ← HonestAction(Γ, ℎ∗)
21 return ComputeWI(Γ| (𝑎∗) , ℎ∗, S, pg)
22 end

23 newsplit← null

24 for 𝑎 ∈ Actions(Γ) do
25 (result, split) ← ComputeWI(Γ| (𝑎) , ℎ∗, S, pg)
26 if result = true then
27 return (true, null)
28 else if split ≠ null then

29 newsplit← split

30 end

31 end

32 return (false, newsplit)

result accordingly. Note that, for simplicity, in line 13 of Algorithm 2 we do not wait for a null split
that would immediately return false, but rather proceed with a split. However, as there are only
finitely many possible case splits, we will eventually see the null split for a false subtree if it exists
and return it to reach the correct result.

Example 6.3. Wemimic the execution of the function ComputeWI from Algorithm 2 on the Market
Entry game from Example 2.3, but this time only assume 𝑎 > 0 is the initial constraint, and 𝑝 ∈ R
can take any value. Suppose we enter Algorithm 2 with the entire tree Γ𝑚𝑒 , honest history (𝑒, 𝑖)
and player 𝑝𝑔 = 𝑀 . Since the root of the tree is along the honest history, the function will jump to

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:19

line 19, and recursively call ComputeWI for the honest subtree Γ𝑚𝑒 | (𝑒) . Then the current player 𝐸
is not 𝑝𝑔, so we proceed with line 10, and iterate through the actions 𝑝𝑤 and 𝑖 . Suppose we first
look at the action 𝑝𝑤 and from line 12 recursively compute the weak immunity for the leaf after
(𝑒, 𝑝𝑤). Algorithm 2 will execute lines 1 and 2, and since the utility of player 𝑀 is 0, which is a
non-negative number, the check in line 2 will be unsat, so the function returns (true, null). For
the other action 𝑖 , we recursively compute (line 12 of the algorithm) the weak immunity for the
leaf after (𝑒, 𝑖). The function GetUtility(Γ𝑚𝑒 | (𝑒,𝑖),𝑀) will return 𝑝

2 , for which we cannot decide
whether it is non-negative (there are no initial constraints on 𝑝). Both conditions from lines 2 and
5 are thus false and we return the pair (false, 𝑝2 ≥ 0) in line 8. Proceeding from the supertree
Γ𝑚𝑒 | (𝑒) in line 12, with the result being false, we return in line 14 the pair (false, 𝑝2 ≥ 0).

Theorem 6.4 (Correctness of Algorithm 1). The compositional approach to compute the game-
theoretic security of an input instance Π for honest history ℎ∗ described in Algorithm 1 is sound and
complete. That is, SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, ∅) = true iff Π with honest history ℎ∗ satisfies the
property 𝑠𝑝 . Otherwise, it returns false.

In addition to compositional security via Algorithm 1, our work supports additional features
to debug a protocol and better understand its structure. Those include (i) strategy extraction in
case the considered security property was satisfied (Section 6.2), (ii) finding counterexamples (Sec-
tion 6.3), and (iii) providing weakest preconditions to make the game secure otherwise. Computing
preconditions in our compositional setting can be done via collecting all cases, where the security
property is violated, and then conjoin and negate them afterwards.

6.2 Extracting Compositional Strategies
The way compositional security analysis in Algorithm 1 works, unfortunately, does not immediately
provide witness strategies. However, Algorithm 1 can still carry around enough information to
compute witnesses.

Theorem 6.5 (Weak(er) Immune Strategies). For a weak(er) immune game Γ, with honest
history ℎ∗ and total order ⪯, strategy 𝜎 is honest and weak(er) immune for all ®𝑥 satisfying ⪯, where

𝜎 := (𝜎𝑝1 , . . . , 𝜎𝑝 |𝑁 |) ,
and 𝜎𝑝𝑖 ∈ 𝒮𝑝𝑖 is a strategy for player 𝑝𝑖 . Strategy 𝜎𝑝𝑖 picks the honest choice along the honest history,
whereas at other nodes, where it is 𝑝𝑖 ’s turn, it picks an arbitrary action 𝑎 that yields a weak(er)
immune for 𝑝𝑖 subtree after action 𝑎.

Theorem 6.5 is constructive in nature, yielding thus an algorithmic approach for extracting a
weak(er) immune strategy. For each player pg, function ComputeWI (and ComputeWERI) proceeds
as follows. If it is their turn after history ℎ, ℎ off ℎ∗, and we found a weak(er) immune choice, we
store this action as the choice of a possible weak(er) immune and honest strategy 𝜎 . If the game
is weak(er) immune for all players, we can simply compute 𝜎 by collecting all the stored choices
throughout the tree.

Example 6.6. We compute the weak immune strategy of the Market Entry game from Example 2.3
with honest history (𝑛), which was analyzed as in Example 5.9. The strategy 𝜎𝑀 for player𝑀 has
to choose the honest action 𝑛 at the root, which is the only choice point for 𝑀 . The strategy 𝜎𝐸

for player 𝐸 needs to choose one weaker immune subtree after history (𝑒). Since the subtree after
history (𝑒, 𝑖) is the only candidate, we set 𝜎𝐸 (𝑒) = 𝑖 . The strategy 𝜎 = (𝜎𝑀 , 𝜎𝐸) is the desired weak
immune strategy.

Collusion resilience and practicality also admit elegant methods for deriving compositional
strategies, as detailed in [Bocevska et al. 2025a].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:20 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

6.3 Finding Compositional Counterexamples
Counterexamples to the security properties, as defined in Definitions 3.12, 3.14 and 3.16, serve
the important purpose of providing attack vectors and thus pinpointing the weaknesses of a
protocol underlying the considered gamemodel. We use the following pseudo-algorithms to compute
counterexamples compositionally.

Compositional Counterexamples to Weak(er) Immunity. We first store information during
Algorithm 2: When analyzing the weak(er) immunity for a player 𝑝 , whenever it is not 𝑝’s turn
and there exists an action leading to a not weak(er) immune subtree (line 14 with split = null in
Algorithm 2), we store the action, the current history and the player 𝑝 .

Secondly, after the analysis terminated and the result was not weak(er) immune, we generate a
counterexample to the weak(er) immunity of player 𝑝 by walking through the tree again. Assume
the current history is ℎ and we proceed from the root as follows.

• If 𝑝 is the current player and ℎ is along the honest history, we follow the honest action to a
subtree. This is sufficient since an honest 𝑝 follows the honest history.
• If it is 𝑝’s turn but ℎ is not along the honest history, all choices had to lead to not weak(er)
immune for 𝑝 subtrees for the current tree to be not weak(er) immune for 𝑝 . We, therefore,
have to follow all choices to compute a counterexample.
• Otherwise, if it is not 𝑝’s turn, we check our stored data for a not weak(er) immune for 𝑝
choice 𝑎. By construction and using Theorem 5.8, it has to exist. We add it to our partial
strategy 𝑠𝑁−𝑝 , i.e. 𝑠𝑁−𝑝 (ℎ) = 𝑎. Then, we continue at history (ℎ, 𝑎).
• At a leaf nothing has to be considered. A not weak(er) immune for 𝑝 leaf leads to a negative
(real) utility for 𝑝 .

According to Theorem 5.8, the steps outlined above provide a player 𝑝 and a partial strategy 𝑠𝑁−𝑝
for the other players 𝑁 −𝑝 , no matter how the honest 𝑝 behaves off the honest history. It also yields
only negative utilities for 𝑝 and it thus provides a counterexample to the weak(er) immunity of 𝑝
and, therefore, a counterexample to the weak immunity of the game with the considered honest
history.
It is also possible to compute all counterexamples to weak(er) immunity. This can be done by

simply storing all actions that lead to not weak(er) immune subtrees.

Example 6.7. Let us adapt the Market Entry game from Example 2.3 by changing the initial
constraint on the variable 𝑝 to 𝑝 < 0. The honest history (𝑛) is not weak immune for player 𝐸, as
they get a negative utility 𝑝 < 0 in the honest leaf. We can thus construct the counterexample as
follows: starting from the root, it is not 𝐸’s turn and the not weak immune choice is (𝑛), so we add
the action 𝑛 to the partial strategy for player𝑀 . We then continue at history (𝑛), which is a leaf, so
we are done.

Counterexamples to collusion resilience and practicality can also be computed, which is detailed
in [Bocevska et al. 2025a].

7 Experimental Evaluation
We implemented the compositional security approach of Section 5 by exploiting its divide-and-
conquer reasoning nature from Section 6. Our implementation is available online in the Check-
Mate2.0 tool 6.

6 https://github.com/apre-group/checkmate/releases/tag/OOPSLA25

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

https://github.com/apre-group/checkmate/releases/tag/OOPSLA25

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:21

Experimental Setup. We evaluated our tool using a machine with 2 AMD EPYC 7502 CPUs
clocked at 2.5GHz with 32 cores and 1 TB RAM using 16 game-theoretic security benchmarks.
Our dataset contains the 15 benchmarks from [Rain et al. 2024], listed in Table 3 in [Bocevska
et al. 2025a], which include realistic models of real-world blockchain protocols along with game
scenarios of various sizes, such as models of an auction (Auction) or tic-tac-toe (Tic Tac Toe, which
is modeled infeasibly on purpose). The games Closing, 3-Player Routing, Unlocking Routing are
detailed models with up to 36,000 tree nodes of different phases of Bitcoin’s Lightning protocol
[Poon and Dryja 2016]. Additionally, we detail later in this section one large example (over 100
million nodes), named 4-Player Routing, in order to showcase the impact of interleaved sub- and
supertree reasoning. 4-Player Routing is yet another realistic model of a phase of the Lightning
protocol.

To the best of our knowledge, the only other automated approach for game-theoretic security is
the CheckMate framework [Rain et al. 2024]. Our experiments also compare CheckMate2.0 to
CheckMate.

Experimental Results. Tables 1 and 2 summarize our experiments, with further details in [Bo-
cevska et al. 2025a]. We report both on the results of CheckMate2.0 and CheckMate; the respective
columns on times, nodes, and calls in Tables 1 and 2 detail these comparisons. In particular, the
columns “Nodes evaluated” and “Nodes evaluated (reps)” of Table 1 indicate the number of game
tree nodes visited during the security analysis without and, respectively, with repetitions. The
“Calls” column of Table 1 shows the number of calls made to the SMT solver while proving the
security property listed in column 4.

Table 1. Selected experimental results of game-theoretic security, using the compositional CheckMate2.0

approach and the non-compositional CheckMate setting of [Rain et al. 2024]. A full summary of our experi-

ments is in [Bocevska et al. 2025a]. Runtimes are given in seconds, with timeout (TO) after 8 hours. For each

game, columns 2–3 list the size (tree nodes and game players) of the game from column 1. Column 4 shows

the game-theoretic security property we analyzed and (dis)proved, as indicated in column 5. Columns 6–9

present the results of CheckMate2.0 compared to CheckMate, using the slash / sign.

Game Nodes Players Property Secure Time Nodes Nodes Calls

yes/no evaluated evaluated (reps)

CheckMate2.0/CheckMate

m
ed
iu
m
-s
iz
ed

ga
m
es

Pirate 79 4 wi n 0.010 / 0.015 10 / 79 10 / 316 5 / 1
(𝑦, 𝑛, 𝑛 cr n 0.041 / 0.029 79 / 79 622 / 1,106 368 / 4
𝑛,𝑦,𝑦) pr n 0.036 / 0.049 79 / 79 482 / 79 554 / 8
Auction 92 4 wi n 0.012 / 0.033 16 / 92 16 / 368 9 / 1
(𝐸, 𝐸, 𝐼 , 𝐼) cr n 0.018 / 0.030 66 / 92 128 / 1,288 103 / 1

re
al
-w

or
ld

m
od

el
s

Closing 221 2 wi y 0.011 / 0.024 20 / 221 22 / 442 16 / 1
(𝐻) weri y 0.010 / 0.021 20 / 221 22 / 442 16 / 1

cr y 0.012 / 0.023 44 / 221 46 / 442 36 / 1
pr n 0.097 / 0.346 221 / 221 568 / 221 1454 / 1

(𝐶ℎ, 𝑆) wi y 0.011 / 0.024 33 / 221 36 / 442 25 / 1
weri y 0.011 / 0.020 33 / 221 36 / 442 25 / 1
cr y 0.013 / 0.023 60 / 221 63 / 442 48 / 1
pr y 2.144 / 0.345 221 / 221 14353 / 221 38220 / 1

3-Player 21,688 3 wi n 0.248 / 0.984 16 / 21,688 16 / 65,064 9 / 1
Routing weri y 0.514 / 1.008 7,084 / 21,688 7,570 / 65,064 5,441 / 1
(𝑆𝐻 , 𝐿, 𝐿, cr n 0.272 / 1.886 430 / 21,688 474 / 130,128 299 / 1
𝑈 ,𝑈) pr n 33.162 / 34.717 21,688 / 21,688 416,156 / 21,688 569,418 / 13
Tic Tac Toe 549,946 2 wi y 5.276 / 255.368 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
(𝐶𝑀, 𝑅𝑈 , 𝐿𝑈 , weri y 5.256 / 255.600 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
𝑅𝐷, 𝑅𝑀, 𝐿𝑀, cr y 5.302 / 286.574 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
𝐶𝑈 ,𝐶𝐷, 𝐿𝐷) pr y 36.530 / TO 549946 / TO 549946 / TO 527198 / TO

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:22 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Experimental Analysis. Table 1 demonstrates that the compositional approach of Check-
Mate2.0 significantly outperforms the non-compositional CheckMate setting in execution time
across nearly all benchmarks. The scalability of CheckMate2.0 is especially evident in the Tic Tac
Toe benchmark, which involves a substantial 548,946 nodes. In this example, for the properties weak
immunity (wi), weaker immunity (weri), and collusion resilience (cr), CheckMate2.0 completes
the security analysis in approximately 5 seconds, whereas CheckMate requires between 255 and
287 seconds. When proving practicality (pr) of Tic Tac Toe, the conventional CheckMate fails to
terminate within 8 hours while CheckMate2.0 succeeds in less than 37 seconds.

In some benchmarks, where a security property is not satisfied, CheckMate2.0 explores signifi-
cantly fewer nodes, see 3-Player Routing for weak immunity and collusion resilience, the Pirate
game for weak immunity, and Auction for weak immunity and collusion resilience.
We note that CheckMate2.0 requires considerably more SMT-solving calls. Notable examples

include the Closing Game (38,220 CheckMate2.0 calls vs. 1 CheckMate call for practicality), 3-
Player Routing (546,418 vs. 13 calls for practicality), and Tic Tac Toe (10,694 vs. 1 call for weak(er)
immunity and collusion resilience). Despite the higher number of SMT calls in CheckMate2.0, the
SMT queries generated by CheckMate2.0 are considerably smaller than the ones of CheckMate;
moreover, CheckMate2.0 calls inhabit a quantifier-free fragment, easing reasoning significantly as
reflected in the improved execution times.

In general, CheckMate2.0 analysis may occasionally result also in suboptimal splits, leading to
longer execution times. This issue is exemplified in the Closing game when analyzing practicality
of the honest history (𝐶ℎ, 𝑆). Additionally, analyzing collusion resilience can sometimes take
longer, particularly when more players are involved, for example in the Pirate game. This might be
explained by the very large number of colluding groups combined with a small game resulting in
many trivial SMT calls compared to CheckMate.

Table 2. Selected experiments on counterexample (CE) generation using our CheckMate2.0 approach and

the non-compositional CheckMate tool of [Rain et al. 2024]. Full details and experiments are given [Bocevska

et al. 2025a]. Runtimes are given in seconds.

Game Property Time (one CE) Time (all CEs)

CheckMate2.0/CheckMate CheckMate2.0/CheckMate

Pirate cr 0.041 / 0.039 3.232 / 79.839
(𝑦, 𝑛, 𝑛, 𝑛,𝑦,𝑦)
Auction wi 0.012 / 0.048 0.025 / 4.172
(𝐸, 𝐸, 𝐼 , 𝐼) cr 0.018 / 0.066 0.036 / 15.106
3-Player Routing wi 0.251 / 1.925 5.909 / 110.716
(𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈) cr 0.279 / 5.619 1.657 / 7.815

pr 33.561 / 46.480 291.236 / 3 033.784

Counterexamples and Strategies. Table 2 presents the CheckMate2.0 runtimes to generate
counterexamples compared to CheckMate, for selected benchmarks. It reports the execution time
required to find one counterexample (for one case split) as well as finding all counterexamples in all
cases for violated security properties. The former is useful for quickly identifying scenarios where
the property is not met, while the latter proves particularly helpful when revising and refining a
protocol. Comprehensive data for all benchmarks can be found in [Bocevska et al. 2025a].

The use of compositionality in CheckMate2.0 demonstrates notable improvements in execution
time, particularly when retrieving all counterexamples. Additionally, the execution times for
compositional analysis with andwithout counterexample extraction are quite similar, indicating that
CheckMate2.0 enables counterexample extraction with minimal overhead. The counterexamples
to collusion resilience for the Pirate game show this clearly. While CheckMate2.0 requires slightly

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:23

more time for property analysis compared to CheckMate, we note that the new CheckMate2.0
identifies all counterexamples across all cases in approximately 3 seconds, whereas CheckMate takes
almost 80 seconds. Similarly, in the case of the 3-Player Routing game, CheckMate2.0 retrieves all
counterexamples for all cases within 291 seconds, while it takes CheckMate over 3,000 seconds (50
minutes).
Similar benefits of CheckMate2.0 can also be observed for strategy extraction, with details

in [Bocevska et al. 2025a].

Sub- and Supertree Reasoning. One of the most significant contributions of the compositional
reasoning is that CheckMate2.0 enables analyzing subtrees independently and integrating only
their security results in the supertree. This feature of CheckMate2.0 is particularly beneficial in
larger models. For instance, the 3-Player Routing and Routing Unlocking benchmarks based on the
routing protocol [Poon and Dryja 2016] are generated using a script, as it is not feasible to model
protocols of this size manually. Modeling the routing protocol for 3 players results in a game with
21,688 nodes (3-Player Routing), taking 20MB on disk.

We next detail a more challenging routing example with 4 players, called 4-Player Routing, which
has 144,342,306 nodes. This example exceeds our 200GB of allocated disk space, and thus could not
even be created fully. However, by leveraging compositionality, we intertwine model generation
and analysis, making it possible to discard generated subtrees after the results of security analysis
have been obtained. Specifically, during the game generation process, each subtree corresponding
to a specific phase of the protocol called unlocking phase (a total of 1440 subtrees) is analyzed on
the fly, with only the results kept. The final outcome, the 4-Player Routing game, is a supertree with
396 regular nodes and 1440 nodes representing subtrees, or 1,836 nodes in total. The supertree has
a size of about 60MB and in it all subtrees for the unlocking phase have already been solved. This
allows us to directly apply CheckMate2.0 to the supertree. Using CheckMate2.0 compositionally,
we conclude that 4-Player Routing is weaker immune, but not weak immune, nor collusion resilient,
nor practical.
We note that game modeling is not in the scope of this paper, but interleaving the modeling

and the analysis of a game, as described in the paragraph above, makes it feasible to verify even
complex real-world models with over 100 million nodes.

8 Related Work and Conclusions
We present the first approach to compositionally analyze the security properties of game-theoretic
protocol models. By mapping our work to SMT-based reasoning in combination, we introduce
a divide-and-conquer framework to automate compositional reasoning in a sound and complete
manner. Our experiments clearly showcase scalability improvements, especially for real-world
protocols with millions of nodes/actions.

We believe that our compositional reasoning framework generalizes to other tree search proper-
ties that are (in-)equations of utility terms quantified over strategies, histories, and player groups,
provided the property can be analyzed player(group)-wise. By memorizing some subtree data, it
should be possible to decide such a property given all subtree results. Other common game-theoretic
properties, such as Nash Equilibria for example, are in fact covered by our security properties and
are thus guaranteed to be of compositional nature.
Our compositional approach is a strong enhancement over the non-compositional setting of

[Brugger et al. 2023]. While the definitions of the security properties are the same, their encoding
is different: we not only improve practical usage but also provide a sound and complete way to
split and combine game-theoretic properties of subgames/supergames. Compared to [Brugger et al.
2023], we minimize the use of SMT solving by applying it only over game leaves.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

342:24 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Compositional game theory, without considering game-theoretic security, is also addressed
in [Bolt et al. 2023; Ghani et al. 2018, 2020]. Here, so-called open games are introduced to represent
games played relative to a given environment. Open games are, however, restricted to constant
numeric utilities and assuming rational behavior of players. Unlike these works, we work with
symbolic utilities and capture honest/rational behavior, and thus security, in games.

Divide-and-conquer approaches to parallelize SMT queries have also been studied [Wilson et al.
2023], proposing partitioning strategies to decompose an SMT problem into subproblems. Our
approach avoids generating large SMT queries altogether, utilizing instead local tree reasoning.
Related to compositional verification, [Wesley et al. 2021] presents compositional analysis of

smart contracts. Instead of verifying a smart contract relative to all users, a few representative users
are chosen, thereby avoiding intractability due to state explosion. While game-theoretic security is
not addressed in [Wesley et al. 2021], program verification and synthesis are worthy approaches to
be further considered in our future work.
Importantly, (automatically) synthesizing game models from the protocol’s definition, respec-

tively source code in the case of smart contracts, is a challenge we aim to address in the future.
Allowing infinite games and modeling game actions impacted by external factors are other tasks
for future work, allowing us to model uncontrollable protocol effects, such as price changes.

9 Data-Availability Statement
The software that implements the techniques described in Section 5 and Section 6 and supports the
evaluation results reported in Section 7 is available on Zenodo [Bocevska et al. 2025b].

Acknowledgments
This research was funded in whole or in part by the ERC Consolidator Grant ARTIST 101002685,
the Austrian Science Fund (FWF) SPyCoDe Grant 10.55776/F85, the WWTF Grant ForSmart
10.47379/ICT22007, the TU Wien Doctoral College SecInt, the Amazon Research Award 2023
QuAT, and a Netidee Fellowship 2022.

References
Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In Handbook of Model Checking, Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer International Publishing, Cham, 305–343.
https://doi.org/10.1007/978-3-319-10575-8_11

Nikolaj Bjørner and Lev Nachmanson. 2024. Arithmetic Solving in Z3. In Computer Aided Verification: 36th International
Conference, CAV 2024, Montreal, QC, Canada, July 24–27, 2024, Proceedings, Part I (Montreal, QC, Canada). Springer-Verlag,
Berlin, Heidelberg, 26–41. https://doi.org/10.1007/978-3-031-65627-9_2

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: compositional static race detection.
Proc. ACM Program. Lang. 2, OOPSLA (Oct. 2018), 28 pages. https://doi.org/10.1145/3276514

Bruno Blanchet. 2014. Automatic Verification of Security Protocols in the Symbolic Model: The Verifier ProVerif. In
Foundations of Security Analysis and Design VII: FOSAD 2012/2013 Tutorial Lectures, Alessandro Aldini, Javier Lopez, and
Fabio Martinelli (Eds.). Springer International Publishing, Cham, 54–87. https://doi.org/10.1007/978-3-319-10082-1_3

Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson. 2025a. Divide and Conquer: a
Compositional Approach to Game-Theoretic Security. EasyChair Preprint 15785, https://easychair.org/publications/
preprint/kxKK.

Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson. 2025b. Artifact Evaluation
CheckMate. https://doi.org/10.5281/zenodo.15725152

Joe Bolt, Jules Hedges, and Philipp Zahn. 2023. Bayesian open games. Compositionality 5 (Oct. 2023), 9. https://doi.org/10.
32408/compositionality-5-9

Lea Salome Brugger, Laura Kovács, Anja Petkovic Komel, Sophie Rain, and Michael Rawson. 2023. CheckMate: Automated
Game-Theoretic Security Reasoning. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.1145/3276514
https://doi.org/10.1007/978-3-319-10082-1_3
https://easychair.org/publications/preprint/kxKK
https://easychair.org/publications/preprint/kxKK
https://doi.org/10.5281/zenodo.15725152
https://doi.org/10.32408/compositionality-5-9
https://doi.org/10.32408/compositionality-5-9

Divide and Conquer: A Compositional Approach to Game-Theoretic Security 342:25

Security (Copenhagen, Denmark) (CCS ’23). Association for Computing Machinery, New York, NY, USA, 1407–1421.
https://doi.org/10.1145/3576915.3623183

Vitalik Buterin. 2014. A Next Generation Smart Contract & Decentralized Application Platform. Technical Report. Ethereum
Foundation. Issue 37. https://ethereum.org/en/whitepaper/

Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. 2018. Compositional Game Theory. In Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for
Computing Machinery, New York, NY, USA, 472–481. https://doi.org/10.1145/3209108.3209165

Neil Ghani, Clemens Kupke, Alasdair Lambert, and Fredrik Nordvall Forsberg. 2020. Compositional Game Theory with
Mixed Strategies: Probabilistic Open Games Using a Distributive Law. Electronic Proceedings in Theoretical Computer
Science 323 (Sept. 2020), 95–105. https://doi.org/10.4204/eptcs.323.7

Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. 2020. Verifpal: Cryptographic Protocol Analysis for the Real World. In
Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop (Virtual Event, USA) (CCSW’20).
Association for Computing Machinery, New York, NY, USA, 159. https://doi.org/10.1145/3411495.3421365

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The TAMARIN Prover for the Symbolic Analysis
of Security Protocols. In Computer Aided Verification. Springer Berlin Heidelberg, Berlin, Heidelberg, 696–701. https:
//doi.org/10.1007/978-3-642-39799-8_48

Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/en/bitcoin-paper
Martin J. Osborne and Ariel Rubinstein. 1994. A Course in Game Theory. The MIT Press, Cambridge, USA.
Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. https:

//lightning.network/lightning-network-paper.pdf
Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. 2023. Towards a Game-Theoretic Security Analysis of

Off-Chain Protocols. In 2023 IEEE 36th Computer Security Foundations Symposium (CSF). IEEE Computer Society, Los
Alamitos, CA, USA, 107–122. https://doi.org/10.1109/CSF57540.2023.00003

Sophie Rain, Lea Salome Brugger, Anja Petković Komel, Laura Kovács, and Michael Rawson. 2024. Scaling CheckMate for
Game-Theoretic Security. In Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning
(EPiC Series in Computing, Vol. 100), Nikolaj Bjørner, Marijn Heule, and Andrei Voronkov (Eds.). EasyChair, Stockport,
UK, 222–231. https://doi.org/10.29007/llnq

Raymond M Smullyan. 1995. First-Order Logic. Dover Publications, New York.
Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born, Immad Naseer, and Kostas Ferles. 2020.

Formal Verification of Workflow Policies for Smart Contracts in Azure Blockchain. In Verified Software. Theories, Tools,
and Experiments, Supratik Chakraborty and Jorge A. Navas (Eds.). Springer International Publishing, Cham, 87–106.
https://doi.org/10.1007/978-3-030-41600-3_7

Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie Gurfinkel. 2021. Compositional
Verification of Smart Contracts Through Communication Abstraction. In Static Analysis: 28th International Symposium,
SAS 2021, Chicago, IL, USA, October 17–19, 2021, Proceedings (Chicago, IL, USA). Springer-Verlag, Berlin, Heidelberg,
429–452. https://doi.org/10.1007/978-3-030-88806-0_21

Amalee Wilson, Andres Nötzli, Andrew Reynolds, Byron Cook, Cesare Tinelli, and Clark W. Barrett. 2023. Partitioning
Strategies for Distributed SMT Solving. In Proceedings of the 23rd Conference on Formal Methods in Computer-Aided
Design, Vol. 4. TU Wien Academic Press, Vienna, Austria, 199–208. https://api.semanticscholar.org/CorpusID:259129858

Paolo Zappalà, Marianna Belotti, Maria Gradinariu Potop-Butucaru, and Stefano Secci. 2020. Game theoretical framework
for analyzing Blockchains Robustness. https://api.semanticscholar.org/CorpusID:219616790

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

https://doi.org/10.1145/3576915.3623183
https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.4204/eptcs.323.7
https://doi.org/10.1145/3411495.3421365
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://bitcoin.org/en/bitcoin-paper
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1109/CSF57540.2023.00003
https://doi.org/10.29007/llnq
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-88806-0_21
https://api.semanticscholar.org/CorpusID:259129858
https://api.semanticscholar.org/CorpusID:219616790

342:26 Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 342. Publication date: October 2025.

	Abstract
	1 Introduction
	1.1 Setting and Wider Application
	1.2 Our Contributions.

	2 Preliminaries
	3 Game-Theoretic Security Properties
	3.1 Security Properties for Subgames
	3.2 Total Orders
	3.3 Counterexamples

	4 Unsound Naïve Approach to Compositionality
	5 Compositional Game-Theoretic Security
	5.1 Security Properties Stratified over Players
	5.2 Splitting and Combining Player-Wise Security Properties

	6 Automating Compositional Security Analysis
	6.1 Divide-and-Conquer Algorithms for Compositional Security
	6.2 Extracting Compositional Strategies
	6.3 Finding Compositional Counterexamples

	7 Experimental Evaluation
	8 Related Work and Conclusions
	9 Data-Availability Statement
	Acknowledgments
	References

