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Abstract. We show that tableau methods for satisfiability in non-classical
logics can be supported naturally in SMT solving via the framework of
user-propagators. By way of demonstration, we implement the descrip-
tion logic ALC in the Z3 SMT solver and show that working with user-
propagators allows us to significantly outperform encodings to first-order
logic with relatively little effort. We discuss extensions of our approach to
theories and promote user-propagators for creating non-classical solvers
based on tableau calculi.
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1 Introduction

Satisfiability modulo theory (SMT) solvers, e.g. [3,11,22], mostly implement
CDCL(T ) [5,20] to combine propositional satisfiability (SAT) solving with
theory-specific decision procedures. Due to the modular nature of the underlying
CDCL(T ) algorithm, not only can SMT solvers reason in combinations of the-
ories, but it is even possible to add and control custom first-order theories by
attaching new decision procedures, as recently introduced in the user-propagator
framework [7]. The underlying logic in the SMT solving community is classical
first-order logic. When moving towards non-classical logics, such as modal or
description logics [2,8,16], tableau calculi provide common ground [10]. The
resulting proof procedures behave very differently to SMT solvers [12,17].

In this paper, we argue that it is time to join forces. We show that tableau
methods can be integrated naturally into SMT solving (Section 3). In so doing, we
promote user-propagators [7] for guiding non-classical reasoning within SMT solv-
ing. We demonstrate our work within the Z3 SMT solver [22] and show that this
approach outperforms two standard Z3 implementations based on quantification
(Section 4). We discuss supporting other non-classical logics (Section 5).

SMT driven by instantiation rules from modal and description logic have been
investigated [1,26,27], as has porting classical tableau rules to SMT [9]. Our work
can be seen as a framework for implementing non-classical semantics, similar to
MetTeL 2 [29,30] where solvers are automatically synthesized from tableau rules.
Translation to first-order [24,25] or higher-order [14,15] classical logics exist, but
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work poorly on satisfiable instances [19,31]. Our approach combines well with
theory reasoning, thanks to CDCL(T ). In addition, the user-propagator allows
applying expert knowledge about the considered logic.

2 Background and Challenges

Background. We assume familiarity with classical first-order logic [28], SMT
solving [6], and the description logic ALC [2]. To avoid confusion with first-order
quantifiers, we use modal syntax to write ALC formulas φ as

φ ::= ⊤ | A | ¬φ | φ1 ∧ φ2 | □rφ

where A is a (theory3) atom and r a modality/role. The logical connectives ⇒,
∧, and ⊥ are defined as usual. The modal operator ♢r is defined as the dual of
□r. We assume a problem in ALC is given by a knowledge base ⟨TBox,ABox⟩.
Elements in TBox are of the form global(φ)4 and are intended to be true in all
worlds. Elements in ABox are of the form wi : φ, asserting “φ holds in world
wi”; or rk : (wi, wj), asserting “rk relates worlds wi and wj”. In case no ABox
is given, we assume the existence of an implicit world w0. The truth-value of a
formula φ under such a Kripke interpretation is given as in [2].

SMT Challenges for First-Order Translation of Description Logics. We motivate
our work by considering the ALC knowledge base

TBox = {global(♢r(A ∧ ♢r¬A))}. (1)

One may reason about this formula by (i) translating it into classical first-order
logic via the standard translation [8]; and (ii) using a decision procedure handling
uninterpreted functions and quantifiers to establish satisfiability of the translated
formula. In particular, step (i) translates (1) into the first-order formula

∀x(∃y(reachr(x, y) ∧A(y) ∧ ∃z(reachr(y, z) ∧ ¬A(z)))) (2)

where reachr is an uninterpreted function symbol. Then, in step (ii) SMT solving
over (2) instantiates the universally-quantified variable x with w0, using for exam-
ple model-based quantifier instantiation (MBQI) [13]. Skolemization introduces
two new constants w1 and w2, which results in the quantifier-free instance:

reachr(w0, w1) ∧ reachr(w1, w2) ∧A(w1) ∧ ¬A(w2), (3)

from which the partial interpretation

reachr(x, y) : if (((x = w0 ∧ y = w1) ∨ (x = w1 ∧ y = w2))) then ⊤ else ∗ . (4)

can be deduced. The symbol ∗ is undetermined and represents an arbitrary
Boolean value. Assume that the SMT solver sets ∗ to ⊥ in order to complete the
3 this is an addition to the classical definition of ALC
4 we write the more usual form φ1 ⊑ φ2 as global(φ1 ⇒ φ2)
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rule: Some constraints P1, . . . , Pn

sign1,1 : φ1,1 ∈ L(w1,1) . . . signn,1 : φn,1 ∈ L(wn,1)
. . . . . . . . .

sign1,m1 : φ1,m1 ∈ L(w1,m1) . . . signn,mn : φn,mn ∈ L(wn,mn)

Fig. 1. Abstract tableau calculus rule.

partial model (4) for checking (2). As the solver cannot derive equalities among
the world constants w0, w1, w2, the solver has to check all three constants with
respect to the universal quantifier of (2). As w1 and w2 violate the universal
quantifier, further constants are generated by Skolemization, but (2) remains
violated and the sequence of MBQI steps repeat indefinitely. Choosing ⊤ for ∗
avoids such failure, but increases the burden of SMT solving, as the solver must
consider all potential relations among all constants (here, w0, w1 and w2) and
eliminate such relations again as they lead to conflicts. Randomly choosing ⊤
or ⊥ for completing the partial model (4) of (2) is not a solution either, as it
combines the disadvantages of both approaches.

3 Tableau as a Decision Procedure in CDCL(T )

Addressing the above challenges, we advocate user-propagators for tailored SMT
solving, providing efficient implementations of custom tableau reasoners. We
propose using the lemma generation process of CDCL(T ), explained below, to
simulate rule application of tableau calculi.

In a nutshell, the CDCL(T ) infrastructure [5] introduces fresh Boolean vari-
ables to name theory atoms of an input formula; the resulting propositional
skeleton is then solved by an ordinary SAT solver. If a propositional model is
found, theory solvers are asked if the model is correct with respect to theory
atoms. These specialized procedures may introduce further “lemma” formulas to
the Boolean abstraction or report conflicts directly, forcing the SAT solver to
“correct” the Boolean interpretation. This is repeated until all theory solvers agree
on the Boolean assignment or the Boolean abstraction becomes unsatisfiable.

User-Propagators in CDCL(T ) with tableau methods. Our solution
builds a custom reasoner using the user-propagator framework [7]. Algorithm 1
shows underlined parts relevant for the following discussion. The custom reasoner
is implemented by providing the methods push, pop, fixed and final in some
programming language. The method abstr(f) is a method to be applied a priori
solving. All other methods are those of the SMT solver.

We can simulate a tableau calculus whose rules are of the abstract form
shown in Figure 15. Each Pi is either containment, sign : ◦(φ̄) ∈ L(w), or non-
containment, sign : ◦(φ̄) /∈ L(w), with φ̄ a sequence of arbitrary operands, and
L(w) a label6. Rules may only add signed formulas to labels and create new
5 a possible implementation is shown in Algorithm 2 in the appendix
6 a set of formulas with known truth-value for some node w on the current branch
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Algorithm 1: Simple CDCL(T ) Algorithm.
Methods that can be provided by a user-propagator are underlined.
1 Method CDCLT(f):
2 f ← abstr(f) ▷ Sect. 3.2
3 Loop
4 if conflict(f) then
5 if backtrack(f) = failed then return UNSAT
6 foreach s ∈ T -solvers do s.pop() ▷ Sect. 3.5

7 while can_unit_propagate(f) do assign(get_up(f))
8 if ¬contains_unassigned(f) then
9 foreach s ∈ T -solvers do s.push() ▷ Sect. 3.5

10 assign(guess_variable(f))

11 else
12 foreach s ∈ T -solvers do s.final() ▷ Sect. 3.4
13 if ¬new_formulas_propagated() then return SAT

14 Method assign(x, value):
15 foreach s ∈ T -solvers do
16 if is_associated(s, x) ∧ is_relevant(x) then
17 s.fixed(x, value) ▷ Sect. 3.3

branches. We consider confluent, non-destructive tableaux with signed formu-
las [28] and explicit labelled nodes [18], which are straightforward in our framework.
Many calculi [10], including those for propositional logics, first-order logics, vari-
ous modal/description logics, and many-valued logics, can naturally be expressed
within Figure 1. The main steps of our work towards integrating tableau reasoning
in SMT solving can be illustrated using the following running example.

Example 1 (Running Example). Consider the ALC knowledge base:

TBox = {global(Hum ⇒ (□p(Alive ⇒ age ≤ recordLifespan) ∧ ♢pHum))}
ABox = {eva : Hum ∨ ♢f¬Hum, par : (eva, paul)}

where Alive (Alive), Hum (Human), and age depend on the current world, but
recordLifespan does not; age and recordLifespan are of integral sort; p (parent)
and f (friend) denote roles; and eva and paul are named worlds.

3.1 SMT-LIB Encoding and Custom SMT Theory

To enable SMT-based tableau reasoning, we encode non-classical logic features
directly in an extension of the SMT-LIB input standard [4]. In particular, we
encode non-classical logic symbols with the help of uninterpreted function symbols
and sorts, yielding an SMT theory of non-classical logic.
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Example 2 (ALC Knowledge Base in SMT-LIB). For ALC, we introduce the
uninterpreted Relation and World sorts and the following functions:

box : Relation×B 7→ B dia : Relation×B 7→ B

global : B 7→ B world : ∅ 7→ W

reachable : Relation×W ×W 7→ B

where B is the sort of Booleans and world represents the current world7. Functions
may have an extra “World” argument to denote their dependency on some world.
With these syntactic features on top of SMT-LIB, Example 1 is encoded as

(declare-fun Hum (World) Bool) (declare-fun Alive (World) Bool)
(declare-fun age (World) Int) (declare-const recordLifespan Int)
(declare-const eva World) (declare-const paul World)
(declare-const p Relation) (declare-const f Relation)
(assert (global

(=> (Hum world) (and
(box p (=> (Alive world) (<= (age world) recordLifespan)))
(dia p (Hum world))))))

(assert (global (=> (= world eva) (or (Hum world) (dia f (Rob world))))))
(assert (reachable p eva paul))

3.2 Preprocessing (abstr)

We next traverse the syntax tree of the parsed problem and introduce fresh user-
function symbols to abstract away operands we want to observe. All instances of
introduced user-functions are automatically associated with our user-propagator
and thus Boolean assignments to those instances might be reported by the
SMT core by calling the fixed method. We might add a node parameter of an
uninterpreted sort to user-functions to store additional information, such as the
current world in Kripke semantics. As we go, we build a tree-shaped abstraction
data structure for keeping track of abstracted subformulas and efficiently applying
tableau rules. Only the root of the abstraction is passed to the SMT solver.
Furthermore, we apply (logic-specific) simplifications.

Example 3 (Preprocessing and Abstraction). Recall Example 1. We replace all
operators handled by tableau rules8 by fresh user-functions: here, for the occur-
rences of □rφ, global(φ), and for theory atoms. World-dependent terms and some
operators, such as □, require a node argument denoting the world in which they
are evaluated. To ease instantiating multiple instances of the formulas, we use an
unbounded variable x as the node argument. We obtain the SMT abstraction
of Example 1 given in Figure 2. G denotes applications of the global-rule, M
applications of □, and T arbitrary theory atoms. ABox elements are encoded
directly by instantiating the node arguments accordingly (e.g., ¬Mf

1 (eva)).

7 which will be eliminated during preprocessing
8 shown in detail in Figure 3
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G1 ∧ (Hum(eva) ∨ ¬Mf
1 (eva)) ∧ reachp(eva, paul)

a1(G1) : Hum(x)⇒ (Mp
2 (x) ∧ ¬M

p
3 (x))

a3(M
p
2 (x)) : Alive(x)⇒ T1(x)

a5(T1(x)) : age(x) ≤ recordLifespan

a4(M
p
3 (x)) : ¬Hum(x)

a2(M
f
1 (x)) : Hum(x)

Fig. 2. Abstraction tree for Example 1. For simplicity, we rewrote □rA as ¬♢r¬A.

3.3 Populating Languages (fixed)

Whenever the SAT core assigns a variable Vi(w) 7→ value, we look up the operator
◦ and its operands abstracted by Vi during preprocessing. We add ◦, together
with the auxiliary symbol and its operands φ̄i, to the respective label set9 such
that L̂(w) := L̂(w) ∪ {(value : ◦, Vi, φ̄i)} As the user-propagator reports only
assignments to formulas that were previously abstracted away by user-functions,
we might also need to abstract away other formulas for which we are not interested
in adding additional rules, in order to be notified when these elements are added to
some labels. For example, if we must observe 0 : (φ1∧φ2) ∈ L(w), we can replace
∧ by a user-function. Usually, the tableau is closed (i.e. conflict) automatically if
we have formulas of different sign. If the calculus has more complicated closing
conditions, they can be reported explicitly by propagating a conflict.

Example 4 (Tracking Assignments to Arbitrary Subformulas). To keep track of
all relevant Boolean assignments to atoms, we replace all atoms by user-functions,
including complex theory atoms such as age(w) ≤ recordLifespan as shown in
Figure 2. To preserve semantics, we add the definitions of the abstracted atoms
by propagation For example, within Example 1 we might eagerly propagate

T1(w) = value ⊢ ((age(w) ≤ recordLifespan) = value),

as soon as T1(w) is assigned the Boolean value.

3.4 Rule Application (final)

Whenever the solver found a Boolean assignment such that the propositional
abstraction of its extended SMT problem (Section 3.1) is satisfied, we apply logic-
specific tableau rules by iterating over the set L̂(w) for every node w until no more
tableau rules are applicable. A propagation claim is of the form J1, . . . , Jm ⊢ C.
An arbitrary number of them can be added by the user-propagator within fixed
and final, indicating that the SAT core needs to assign C 7→ 1 justified by
the expressions J1, . . . , Jm; here, C may be an arbitrary Boolean expression.

9 L̂(w) are sets maintained by the user-propagator code to simulate L(w).
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Consider a tableau rule R as in Figure 1 and assume that R is applied because
{P ′

1, . . . , P
′
m} ⊆ {P1, . . . , Pn} are satisfied, obtaining

Just(P ′
1), . . . , Just(P

′
m) ⊢ C, (5)

where Just(P ′
i ) is Ji. We give C as a formula in disjunctive normal form (DNF)∨

1≤i≤n

∧
1≤j≤mi

(φi,j(wi,j) = signi,j) (6)

simulating application of rule R. We note that by using relevancy propagation [21]
SMT solving may enjoy tableau-style branching, such that only one disjunct of
the above DNF is chosen and reported assigned; unnecessary Boolean assignments
are not reported to the user-propagator. We distinguish between two types of P ′

i

in (5): (i) those asserting elements are in the label, where P ′
i is sign : ◦(φ̄) ∈ L(w);

and (ii) those that assert the opposite, where P ′
i is sign : ◦(φ̄) /∈ L(w).

Justifying (i) is straightforward, as there must be an auxiliary user-function
denoting that the respective element is contained in the label. We therefore have
sign : ◦(φ̄), V, φ̄ ∈ L̂(w) and define Just(P ′

i ) to be the equality V = sign. Case
(ii) cannot be justified in general in our encoding because some assignments might
not have been reported due to relevancy propagation. However, justifications for
non-containment constraints may be omitted in the following scenarios:

1. The expression C can be simplified to ⊤ with respect to the current SAT
assignment and hence lemma (5) and its justifications are irrelevant. Consider
M(w) 7→ 0 where M(w) replaces A ∧ B and 0 : A ∈ L̂(w)10. Propagating
M(w) ⊢ A(w) = ⊥∨B(w) = ⊥ has no effect, as the SMT solver detects that
the consequent is already satisfied and ignores (5).

2. Applying R without satisfying the negative containment condition does not
affect soundness or completeness and we make sure that we do not apply R
infinitely often. Consider M(w) 7→ 0 where M(w) replaces □A. Applying this
rule once or finitely often does not affect soundness or completeness in ALC.

In either scenario, we do not justify that the respective conditions P ′
i are satisfied,

but only check P ′
i before application of R (e.g. checking if a world is blocked).

We hence set Just(P ′
i ) to ⊤.

Example 5 (Applying Rules). Recall Example 1. Consider 1 : Mp
2 ∈ L̂(eva),

0 : Mp
3 ∈ L̂(eva) and 1 : G ∈ L̂. SMT solving may propagate in final

Mp
3 (eva) = ⊥ ⊢ (¬Hum(mary)) = ⊥ ∧ reachp(eva,mary) = ⊤

by a 0 : □-rule instance of Figure 1, where mary is a fresh world. The next final
callback might then propagate (because of the 1 : □ rule and 1 : global rules)

Mp
2 (eva) = ⊤ ∧ reachp(eva,mary) = ⊤

⊢ (Alive(mary) ⇒ T1(mary) = ⊤
G1 = ⊤ ∧ reachp(eva,mary) = ⊤

⊢ (Hum(mary) ⇒ (Mp
2 (mary) ∧ ¬Mp

3 (mary))) = ⊤.
10 for details on specific rules, refer to Figure 3
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Table 1. Experimental results for benchmarks in the modal logic K.

satisfiable (400) unsatisfiable (185) total (585)
standard translation 221 (55.3%) 81 (43.8%) 302 (51.6%)

model building 219 (54.8%) 78 (42.2%) 297 (50.8%)
user-propagator 269 (67.3%) 132 (71.4%) 401 (68.5%)

3.5 Backtracking (push+pop)

Backtracking in the CDCL core of SMT solving uses justifications provided for
propagation claims. Our SMT-based tableau reasoner has to reset (pop) its state
to a previously-saved state (push), by reverting labels L̂(w). However, unlike
tableau calculi, subformulas introduced by rule application may persist after
backtracking because of conflict learning and similar techniques, which can result
in the solver assigning these atoms unnecessarily. These spurious assignments
correspond to adding elements to some label L(w) without a respective rule being
applicable and hence, it might happen that L̂(w) ̸= L(w). We can nonetheless
apply rules resulting from spurious assignments as if they were not spurious:
mostly, the solver will either justify the spurious elements anyway later or, in the
case of a conflict, backtrack and undo these assignments.

Example 6 (Spurious Assignments). Recall Example 1. Suppose paul has a parent
mary, generated by Mp

3 (paul) 7→ 0 using the 0 : □-rule. Further, assume mary
has a parent sam, generated by Mp

3 (mary) 7→ 0. On conflict, the SMT solver
might backtrack to a state before assigning Mp

3 (paul) 7→ 0. The tableau-based
theory solver removes reachp(sam) from L̂(mary), as well as reachp(mary) from
L̂(paul). However, the solver may not “forget” the existence of atoms Mp

3 (mary)
and Mp

3 (paul). It may therefore happen that Mp
3 (mary) is assigned later without

first generating mary via Mp
3 (paul) 7→ 0. We ignore this spurious assignment,

as the solver may later again assign Mp
3 (paul) 7→ 0, ex post facto justifying

the existence of mary. If this justification is not given later and we encounter a
conflict, the solver backtracks and removes the spurious assignment. If it leads to a
model, we ignore everything in the model resulting from the spurious assignment.

4 Implementation and Experiments

We implemented11 our tableau reasoning approach from Section 3 in the Z3
SMT solver [22]. We compare our implementation applying user propagation over
the custom SMT theory of Section 3.1 against our implementation using two
translations of modal logic to first-order logic, viz. the standard translation [8] and
iterative deepening using cardinality assumptions. We considered altogether 400
satisfiable and 185 unsatisfiable benchmarks in the modal logic K [23]. Our initial
experiments using a 60-second timeout are summarized in Table 1, showing that

11 https://github.com/CEisenhofer/ModalZ3

https://github.com/CEisenhofer/ModalZ3
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applying our user-propagator framework performs the best12. This is partially
so because quantifier reasoning in Z3 comes with MBQI overhead (Section 2).
Finite model building performs poorly for large minimal models.

5 Conclusion and Discussion

We introduce an SMT-based reasoning framework for tableau methods, encoding
tableau rules directly in SMT and applying user-propagators for custom reasoning.
When implemented and evaluated using the Z3 SMT solver, our results outper-
form alternative encodings of the modal logic K. However, implementing logics
via user-propagators requires further knowledge about the considered non-classical
logics for tailored support towards, e.g., conflict learning and theory reasoning.

Beyond the Boolean Basis and Alternative Encodings. We so far considered
an assignment V 7→ value to denote that value : V ∈ L(w) and only capture
value : V /∈ L(w) implicitly. This can be generalized to n mutually-exclusive
truth values by using ⌈log2(n)⌉ Boolean variables. If, on the other hand, we
need to justify that some element is not in our label, we can use a different
encoding with each potential value encoded by a single Boolean. In this case, we
use bitsign(V ) = true to represent V ∈ L(w) instead of V = sign.

Example 7 (Ternary Logic). Consider a three-valued logic with values true, false,
and undefined. The first encoding represents each truth value as a list of two bits
where 00 represents false, 01 true, and 10 undefined respectively. The case of 11
is invalid. The second uses a list of three bits, one for each potential value. For
each introduced subformula, we additionally propagate the cardinality constraint
that exactly one bit has to be set to 1. This encoding incorporates the usual
assumption that value1 : ◦ ∈ L(w) and value2 : ◦ ∈ L(w) with value1 ̸= value2
represents a conflict, but could be dropped in cases where this is not desired.

Theories and Non-Classical Logic A challenging question arises when considering
theories in combination with non-Boolean based logics. As we abstract away
theory atoms (Example 3) and add them again on demand (Example 4), we can
customize what and how theory atoms are passed to the SMT solver. For ternary
logic, we might propagate the theory atom positively when assigned true, for
false its negation, and nothing when the value is undefined.

Acknowledgements We thank Nikolaj Bjørner for discussions on this topic. We
acknowledge funding from the ERC Consolidator Grant ARTIST 101002685, the
TU Wien SecInt Doctoral College, and the FWF SFB project SpyCoDe F8504.

12 see Figure 4 in the appendix for more details
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Appendix

¬ rule : 1 : ¬φ ∈ L(w)
0 : φ ∈ L(w)

¬ rule : 0 : ¬φ ∈ L(w)
1 : φ ∈ L(w)

∧ rule : 1 : φ1 ∧ φ2 ∈ L(w)
1 : φ1 ∈ L(w)
1 : φ2 ∈ L(w)

∧ rule : 0 : φ1 ∧ φ2 ∈ L(w) and 0 : φ1, φ2 /∈ L(w)
0 : φ1 ∈ L(w) 0 : φ2 ∈ L(w)

□ rule : 1 : □rφ ∈ L(wi) and 1 : r(wj) ∈ L(wi) and wi not blocked
1 : φ ∈ L(wj)

□ rule : 0 : □rφ ∈ L(wi) and ∄wj(1 : r(wj) ∈ L(wi) ∧ φ ∈ L(wj)) and wi not blocked
0 : φ ∈ L(wj) with fresh wj

1 : r(wj) ∈ L(wi)

global rule : 1 : global(φ) ∈ L, w not blocked, and w occuring in some L(w′)
1 : φ ∈ L(w)

individual rule : 1 : (w : φ) ∈ L
1 : φ ∈ L(w)

reach rule : 1 : (r : (wi, wj)) ∈ L
1 : r(wj) ∈ L(wi)

with w being blocked iff ∃succ1, r1, . . . , succn, rn(r1(w) ∈ L(succ1) ∧ r2(succ1) ∈
L(succ2) ∧ . . . ∧ rn(succn−1) ∈ L(succn) ∧ L(w) ⊆ L(succn))

Fig. 3. Rules for the ALC Description Logic. For simplicity, we assume TBox and
ABox elements are added with sign 1 to the label L.
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Algorithm 2: Naive Implementation with Nodes
1 Class UP:
2 stack⟨map⟨w, set⟨expr⟩⟩⟩ labels
3 abstraction_tree tree
4
5 Method abstr(formula):
6 foreach direct_subformula ∈ formula do
7 if is_special(direct_subformula) then
8 aux← fresh_user_function()
9 replace(direct_subformula, aux)

10 tree.add(aux, direct_subformula)

11 Method push:
12 labels.push(clone(labels.peek())

13 Method pop:
14 labels.pop()

15 Method fixed(expr = value):
16 stack.peek()[expr.arg(0)].add(value : expr)

17 Method final:
18 repeat
19 rule_applied← false
20 foreach (w, label) ∈ labels.peek() do
21 foreach value : expr ∈ label do
22 rule← tree.get_rule(value : expr)
23 applied← applied | rule.apply(w, tree.get(expr))

24 until rule_applied = false
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Fig. 4. Subset of the K Benchmarks Experiments
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