Constraint Learning for
Non-Confluent Proof Search

Michael Rawson' ®)@®, Clemens Eisenhofer?®, and Laura Kovacs?

! University of Southampton, Southampton, UK
michael@rawsons.uk
2 TU Wien, Vienna, Austria
{clemens.eisenhofer,laura.kovacs}@tuwien.ac.at

Abstract. Proof search in non-confluent tableau calculi, such as the
connection tableau calculus, suffers from excess backtracking, but simple
restrictions on backtracking are incomplete. We adopt constraint learn-
ing to reduce backtracking in the classical first-order connection calculus,
while retaining completeness. An initial constraint learning language for
connection-driven search is iteratively refined to greatly reduce back-
tracking in practice. The approach may be useful for proof search in
other non-confluent tableau calculi.

Keywords: Constraint Learning - Connection Tableaux - Backjumping

1 Introduction

State-of-the-art methods for automated theorem proving are based on exhaus-
tive search, using a proof calculus to explore the space of possible proofs. The
search for proofs can be either backtracking or non-backtracking in nature. Back-
tracking search is required when the underlying calculus allows search to become
“stuck” because of choices made previously in the search. These previous choices
must be undone, and an alternative choice made, in order for the search to
continue, which we call backtracking.

Some calculi do not require backtracking, such as confluent tableau calculi.
Calculi like superposition and instance generation also fall into this category.
Backtrack-free calculi are sometimes preferred and often enjoy theoretical ad-
vantages. However, in some cases, a non-confluent calculus is more practically
effective, or is preferred for some other reason. We are therefore interested in
improving the behaviour of backtracking proof search.

Backtracking search is not a problem inherently: state-of-the-art SAT solvers
are uniformly based on backtracking procedures. Problems arise when the back-
tracking behaviour is pathological, backtracking too little, and trying to close
the same goals again when the root cause of the dead end has not changed.
We note in passing that backtracking too much would also cause problems. In
SMT solving, for example, adding or removing theory literals to or from their
respective decision procedures is a relatively expensive operation that should be
avoided if possible, which is why smaller backtracking steps are preferred.

http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-8299-2714

2 Rawson et al.

A
AN

N

AN
Ll L1 L2 . Ln
Fig. 1. The three inference rules of the clausal connection tableau calculus: start, re-
duction, and extension. In the start and extension rules, C = L1V LoV ...V L, is a
clause from the input set, with its variables renamed apart from the tableau. In the
reduction and extension rules we require that o(—L) = o(L1), i.e. L and Ly are con-
nected (shown with dashed lines).

We address this here by adapting a technique called constraint lea7‘m’ngE| from
the constraint satisfaction community. During the search for a closed tableau,
we sometimes arrive at a dead end where no further inferences are applicable
in the tableau calculus. At this point, we analyse the reason that no inference
is applicable and learn a constraint clause that prevents us from arriving at a
similar tableau that is stuck for the same reason. The accumulating constraint
database helps to guide the search towards more promising areas, or eventually
shows that no closed tableau exists.

A potential source of confusion. Readers familiar with SAT solving, in-
stance generation and/or refutational theorem proving may suspect that we are
learning consequences of the input problem, and that if we derive an obviously
unsatisfiable constraint like the empty clause or 0 = 1, the input problem is
unsatisfiable. This is not the case: we are learning constraints about the search
space, and such constraints show that there is no closed tableau to be found (at
a particular resource bound).

2 Background and Motivation

We assume familiarity with tableau methods [I0] and classical first-order logic.
The connection method [6], connection tableau calculus [2I], model elimina-
tion [22], and the method of matings [2] are closely related proof search methods.
We will present our work in the language of connection tableaux, given the audi-
ence. The connection refinement demands that any addition to an open branch
is connected (contains a literal of opposite polarity) to the leaf literal, which
produces a very strong goal-directed effect. This comes at the expense of conflu-
ence, even for propositional logic: choosing the wrong extension of the tableau
can prevent closing the tableau.

3 better known as clause learning in the context of Boolean satisfiability

Constraint Learning for Non-Confluent Proof Search 3

By lifting propositional connection tableau to a free-variable tableau calculus
with a global substitution o, one obtains a complete calculus for classical first-
order logic [2I]. We show the three inference rules of the clausal connection
tableau calculus in Figure [I} start adds a clause to an empty tableau, reduction
closes a branch by connecting a leaf literal to a literal on its path, and extension
adds a clause that is connected to an open branch. With minor modifications,
the connection method can be adapted to other logics such as intuitionistic [26]
or modal [28] logics, or to non-clausal proof search [29].

The simplicity of the calculus admits very compact theorem provers, often
making use of Prolog and related technology [26I3T38]. While tableau methods
are no longer the state of the art in classical first-order theorem proving, they
are still competitive for proving conjectures in the presence of large numbers
of irrelevant axioms (a key application for interactive theorem provers [23]) or
in specialised settings [4I]. They have also found a new home in experiments
applying machine learning to theorem proving [20/3642], where their simplicity
— and to some extent their backtracking — makes them an attractive choice. We
assume here that equality has been preprocessed away from the input [25/8]33],
although it is possible to extend connection calculi with support for equational
reasoning [6I3214].

2.1 Excess Backtracking in Connection-Driven Search

In order to remain complete, propositional connection systems must consider
alternative additions to the tableau, but once a branch has been closed, it can
remain so. At the first-order level, alternative ways to close the same branch
must also be considered: this is because closing a branch may bind variables in
the global substitution in a way that prevents closing a different branch later.

Otten noticed that this requirement produced an enormous amount of back-
tracking in some cases [27]. He introduced a Prolog cut into leanCoP’s search
routine, rendering it incomplete but significantly reducing backtracking and in-
creasing performance in many cases. Later, Farber studied the behaviour of these
cuts extensively and developed several variants [14]. All of Féarber’s variants are
incomplete, but some are considerably more effective in practice than others. We
will use his meanCoP system as a point of comparison in Section [6]

2.2 Terminology and Convention

We use some terms informally, which we hope will aid understanding rather than
cause confusion. As tableau-based first-order theorem provers typically manipu-
late a tableau and a substitution together, we will refer to both of them simply
as “the tableau” where it is not confusing. When an inference of the calculus is
attempted but cannot be successfully applied, we say it has failed. Moreover, if
we can detect that a tableau can never be closed, we say it is stuck. Both failed
inferences and stuck tableaux may be explained in terms of a constraint, which
we call a reason.

4 Rawson et al.

We will need to refer explicitly to particular positions in a tableau. We use
the obvious scheme where for any position p, p.i is the position at the i*® branch
below p. The empty position stands for the root of the tableau. First-order
variables in a tableau are named according to the position below which their
clause is attached, and are hence consistent across backtracking. We simply use
u, v, w, T, y and z for first-order variables, ¢ and d for constants, f for a function,
and P, @, R, and S for predicates. Finally, we elide parentheses in terms and
literals and consider —=—L identical to literal L.

2.3 Constraint Learning

Constraint learning [I1] is a well-known but somewhat vaguely defined approach
in constraint satisfaction and artificial intelligence. It is not necessary for our pur-
poses to formally define constraint learning nor explore all of its developments,
but the core of the idea is as follows. In a backtracking search for a solution to
a set of constraints, we may encounter a dead end, where making a step in any
available direction violates some constraint. A subset of the search’s previous
decisions may be blamed for this situation by a justification extraction process.
A constraint enforcing that not all of the elements within the justification may
be selected simultaneously is added to the constraint set, which prevents search
from running into a similar unfortunate situation again. This learned constraint
(usually in the form of conflict clauses) can also be used to do backjumping:
backtracking by more than one level.

Constraint learning was particularly effective for Boolean satisfiability [37]
(SAT) solving and is the basis for modern conflict-driven clause learning (CDCL)
SAT solvers and therefore satisfiability modulo theory (SMT) solvers [5].

2.4 Running Example

We use a particular example throughout the paper. Consider the following set
of first-order clauses:

Vzyz. PrV QyV RxyV Pz (1)

Va. =Pz V S (2) -Pfc (5)
=SV -Pc (3) Vx. =Rxc (6)
-Qd (4) Va. “Rdx (7)

Figure [2| shows a connection tableau built from this set of clauses. It has a
single open branch Rxy, shown boxed at position 3. The current substitution is
{x—c¢, y—d, z+— fe, wr x }. The only available extension steps for Rxy
are ~Rdv or =Rwve. The tableau is stuck, as neither are possible. At an earlier
stage of construction, before x — ¢ and y — d, both extensions would have been
possible. Note that the way in which Pz at position 4 is closed is irrelevant,
while the sub-tableaux at 1 and 2 contribute to the dead end.

Constraint Learning for Non-Confluent Proof Search 5

/Px\ Qy Rzxy Pz
JNN |
-Pw /S | mQd -Pfc
I I
// \\
-S —=Pc

Fig. 2. Running example: a connection tableau built from clauses [[H7]

3 Learning Constraints

We propose learning and storing constraints during proof search in the connec-
tion tableau calculus in order to prevent us from repeatedly reaching dead ends
for similar reasons. We will now define a constraint language to explain why no
inference step is possible in a given situation, which will allow us to design an
improved search procedure in Section [4] Suppose that a particular inference step
would normally be applicable to an open branch in the tableau. If this step is
not applicable, it must be that some rule applications elsewhere in the tableau
prevented it. We therefore define our constraint language to be based on the
inference rules of the connection tableau calculus. We will refine this language
in Section [p] but for now, consider the following definition.

Definition 1 (Simplified Constraint Language). Constraints are sets of
atoms. Each atom 1is either:

1. S¢, representing starting the tableau with clause C;
2. R, representing a reduction from position p to an ancestor q in the tableau;

3. 58/1., representing extending position p by a connection to the i'" literal of
clause C'.

Note that each atom includes the open goal (or root) to which the step is applied.
This language is sufficient to explain why an inference j that would be possible
otherwise is currently not possible within the tableau and describes this situation
in a way to cover a whole class of similarly affected tableaux. This is done by
finding a subset of the inference steps already applied to the tableau that prevent
the application of inference j.

Definition 2 (Reasons for failed inferences). Take an open branch B in
a tableau T constructed by a series of inferences I. We construct a sub-tableau
T’ by applying only those inferences I' C I which are necessary to produce B,
i.e. the start clause and a series of extensions along the path to B. Suppose that
there is an inference j that can be applied to B in T’ but not in T. A reason for
failing to apply j in T is a minimal set E C I\ I' which, if applied additionally
to T', prevents applying j at B in the resulting tableau.

6 Rawson et al.

Ezample 1 (Reasons for inference failure 1). Consider the tableau in Figure
To close it, the remaining open branch Rzy must be extended. Suppose that we
wish to extend it with clause [7} This would have been initially possible, but by
now the global substitution contains x — ¢ and the extension is impossible.

We can explain this in our language by noticing that the minimal set of
previous inferences required to make the extension impossible are those that close
the branch at position 1, Pz. The other two branches at 2 and 3 are irrelevant,
even though those branches are also closed and affect the global substitution. If
we take the minimal set of previous inferences, we obtain { S, 1, 21, Riss}

Ezample 2 (Reasons for inference failure 2). We return to the tableau in Fig-
ure[2] but now consider extending the open branch with the unit clause[6} Again,
we notice that only the branch Qy at position 2 is relevant for explaining why
this extension fails, and produce the reason { §, 1 }.

Now we turn our attention to explaining why a tableau is stuck. This has two
parts: stating that there is an open branch B, and showing that no inference can
be applied to B.

Definition 3 (Reasons for stuck tableaux). Take T, B, I, T' and I' from
Deﬁm‘tion@ and take J to be the set of possible inferences from B inT'. Suppose
that no j € J can be applied to B in T'. We compute the set of reasons R; for
each inference j as follows:

1. If the calculus prevents j in T, we compute an explanation R; by Defini-
tion [2.

2. If j is applicable but leads to a tableau that is also stuck, we compute a
reason R’ for that tableau recursively and set R; = R'\ { j }.

I’ describes B as an open branch, and the union of all inference failure reasons
R; shows that no inference can be applied to B. We define

URJ‘UI/
J

to be a reason that T is stuck.

Ezample 3 (Reasons for stuck tableauz). Consider once again the tableau in Fig-
ure 2] and its open branch. If the only possible extensions are with clauses [6] and
[7] the tableau is stuck as neither can be applied here. Using the reason set from
Examples [I] and [2| and noting that I’ is simply Sq, we obtain

{‘Eh]v 17 217 R%.Q.Qv 1 }

as a reason for T' being stuck.

In general, reasons are not unique for any given stuck tableau, both because
there could be more than one open branch, and because there could be more
than one reason for a failed inference. Choosing one reason suffices, but some
are likely to be stronger than others.

Constraint Learning for Non-Confluent Proof Search 7

Algorithm 1 An iterative search routine for finding closed tableaux.

T < empty tableau
constraints < ()
trail < nil
repeat
success < false
B + select_open_branch(T)
learn <+ explain(7T, B)
for all possible inferences j at B in T' do
if not apply(7, j) then
learn < learn U compute reason(T),j)
else if there is a conflict clause C'U {j} violated by j and the trail then
learn <+ learn U C'
else
trail < j :: trail
success < true
break
end if
end for
if not success then
while learn is violated do
i < pop(trail)
undo(z, T)
end while
record_learned_clause(learn)
end if
until 7" is closed or learn is empty

4 Search with Learned Constraints

In the previous section, we defined the constraint language so that stuck tableaux
can be adequately explained. The search algorithm should now be redesigned to
make use of these learned constraints. We implement something similar to that
found in CDCL SAT solvers, SMT solvers, or constraint satisfaction systems.
Alongside the current tableau, we maintain a trail of atoms that are true for the
current tableau.

The search algorithm repeatedly applies rules, gets stuck, learns a constraint,
and backtracks. It terminates when the tableau is closed or the empty constraint
is learned. We maintain the invariant that no learned constraint is wviolated by
the current trail: a constraint is violated if all of its atoms are contained in the
trail. In case the tableau is empty, a start clause is chosen. Otherwise, at each
iteration, an open branch of the tableau is selected for reduction or extension. If
any such inference is possible, it is applied to the tableau, and the corresponding
atom describing the result of the inference is added to the trail. On the other
hand, an inference j may be impossible either:

1. because the calculus does not permit it, or

8 Rawson et al.

2. because adding its corresponding atom would violate a learned clause.

In the first case, a reason for the failed inference is computed as in Definition
Otherwise, the reason for its failure is the learned constraint it would violate,
minus the atom corresponding to j (Definition [3|) In this way, when all possible
inferences at an open branch have failed, a constraint against the stuck tableau
is learned such that all the atoms in the constraint are on the trail. To restore
the invariant, the system backtracks until at least one violated atom is no longer
on the trail.

The overall procedure is shown in Algorithm [T} compute_reason computes
a reason in the sense of Definition [2| and explain computes I’ for B as in
Definition [3] It is considerably more complex than the usual procedures for
finding closed connection tableaux, particularly those embedded in Prolog via
the “lean” methodology [26]. However, it is simpler in one aspect: there is no
need to remember alternative inferences at backtracking points, which can be
quite involved if not implemented in terms of Prolog’s existing backtracking
mechanism [19].

4.1 Resource Bounds

Connection systems typically search by iterative deepening on a particular met-
ric, such as the length of the longest branch. A small limit is set initially, and
then a system will begin search, bounded by the current limit. If no tableau ex-
ists at one iterative deepening level, the limit is increased and search tried again.
We follow this approach here: our search algorithm looks for a tableau bounded
by some maximum branch length, and if one does not exist, it will eventually
terminate by learning the empty clause.

Constraints learned at one iterative deepening level cannot be reused for
the next, as our approach would become incomplete. It is possible to alter the
constraint language in order to express constraints that (do not) depend on
the depth limit, but this is of limited practical purpose for at least two reasons.
Firstly, because the search space at the next iterative deepening level tends to be
much larger than the exhausted previous level, reusing constraints independent
of the depth limit from the previous level does not help much. Second, in practice,
there are few such constraints.

4.2 Soundness, Termination and Completeness

We show that Algorithm [I] terminates at any fixed depth limit and use this
to show completeness. Soundness is trivial, as the routine searches within an
existing sound calculus.

Lemma 1 (Termination). Fiz a depth limit. Algom'thm terminates.

Proof. First, note that at any depth limit and for any finite set of input clauses,
there is a finite number of possible tableaux, all of which are of finite size.
Because all tableaux are of finite size, the routine will eventually either close

Constraint Learning for Non-Confluent Proof Search 9

the tableau, terminating immediately, or become stuck. When stuck, the routine
learns a constraint which, by construction, is violated by the current trail, and
therefore prevents reaching at least this particular tableau again. As constraints
are never forgotten within the same depth limit, and there are a finite number
of possible tableaux, termination is guaranteed as the solver eventually learns
constraints eliminating all possible tableaux. d

Lemma 2. Learned constraints are not violated by any closed tableau reachable
in the proof calculus at a given depth limit.

Proof. By induction on the derivation of learned constraints. Suppose a learned
constraint C'is violated by a closed tableau T*. By definition, C is a subset of the
rules required to construct 7*. Construct the intermediate tableau T' generated
by C. Take the next inference step j from T towards T*. In Definition [3] C is
justified on the basis that all inferences, including j, from T are impossible, either
because the calculus prevents it (Definition , or because another constraint C”
is violated. By the induction hypothesis, applying j does not violate any such
C’, so 7 must not be legal in the calculus, and we have a contradiction. O

Theorem 1 (Completeness). If a closed tableau exists at a depth limit, it will
be found by Algorithm [1]

Proof. By termination and Lemma a

5 Refining the Constraint Language

The simple constraint language introduced in Section [3]is sufficiently expressive
to block classes of similar tableaux, but is quite specific to a particular tableau
and fails to block all the similar tableaux we might like. It is also quite clunky to
work with and would be difficult to compute inference failure reasons efficiently
in practice: see Section [6.2}

We therefore decompose each atom into multiple smaller atoms of two kinds:
placing literals at positions in a tableau, and binding variables to terms. How-
ever, mutatis mutandis the search procedure remains the same, pushing one or
more such atoms onto the trail for any one inference. As well as being simpler
to implement, constraints can be much stronger as they do not block only a
particular derivation of a tableau, but any tableau having particular literals and
variable bindings.

Definition 4 (Refined Constraint Language). A constraint remains a set
of atoms. However, each atom is either

1. L@p, a literal L being placed at position p
2. x — t, a variable x is bound to a term t where t itself may be a variable.

Each inference of the connection tableau calculus can be expressed as some
combination of these. Adding clauses in start and extension rules is done by
placing their literals at the corresponding positions. Connections of literals in
extension and reduction rules are applied by computing the required variable
bindings.

10 Rawson et al.

Ezample 4 (Refined constraint learning). Take the tableau in Figure [2| We will
explain why it is stuck in terms of the new constraint language. Extending Rzy
with = Rwvc is not possible because y — d, which is on the trail because Qy was
connected to —Qd. Similarly, extending Rxy with —Rdwv is not possible because
x +— c¢. To finish the explanation, we have to say why Rxy needs to be closed
in the first place, but this is straightforward: Rxy@3. The final explanation is
therefore

{ Rxy@3, x— ¢, y—d }.

5.1 No-Connection Atoms

In the proposed language, explaining why an open branch cannot be reduced can
become overly specific.

Ezample 5 (Explaining reduction failure). Consider an open branch —Pc at the
depth limit, with path literals Px, Qc, Red, S and a substitution containing x —
d. Suppose the positions from root to leaf are pj ... ps. Clearly =Pc cannot be
reduced. In the case of Pz, the constraint contains somewhat useful information:
if were not bound to d, this branch could be reduced. However, for all other
path literals, the only useful information is that they cannot be connected with
—Pc, but this is not in the language, and we must learn

{ =PcQps, PxQp;,z — d, QcQps, RedQps, SQp, }.

This kind of situation occurs often in practice and needlessly specialises the
learned constraint to a particular sequence of path literals. To avoid this problem,
a new kind of atom p ¢ ¢ is introduced, representing that no connection can
ever be made between the two positions p and ¢, regardless of the substitution.
Whenever a literal is added to the tableau at position ¢, its path is checked
to see, which literals at positions p it could be reduced with, and where this
is impossible, p % ¢ is added to the trail. In the above example, the learned
constraint would be

{ ~PcQps, PxQp,, x> d, pz % ps, p3 %P5, Pa ¥ Ds }-

and more general, as it does not specify which literals are at ps, p3, or py.

5.2 Disequations

Classical refinements such as regularity and eliminating tautologies greatly im-
prove the performance of connection systems [21I]. These are classically imple-
mented by means of disequations. We can support this naturally in the constraint
language by adding disequation atoms of the form s # ¢. When a disequation is
falsified, backtracking can be induced by giving the disequation and the variable
bindings required to falsify it as a learned constraint.

Constraint Learning for Non-Confluent Proof Search 11

6 Implementation and Experimental Validation

We implemented a prototype system hopCoPEI to experiment with constraint
learning. So far, the implementation is imperative — although we suspect a lean
Prolog implementation may be possible via assert/1 [I8] — and owes much
to implementation techniques found in the Bare Metal Tableaux Prover [19]
and meanCoP [14]. hopCoP implements the clausal connection tableau calculus,
without cuts [27] and starting from clauses derived from the conjecture. With the
obvious exception of constraint learning, hopCoP’s search routine resembles that
of meanCoP, if the meanCoP flags --conj --nopaths are se‘ﬂ meanCoP also
implements a lemma mechanism [2I] that hopCoP so far lacks. In Sections
and [6.2] we highlight two aspects of the implementation that may be of interest
to implementers of similar systems.

6.1 Constraint Management and Detecting Conflicts

A large number of constraints are learned during search, millions with a long
enough time limit. However, this seems to be less dramatic than in other settings
such as SAT solving, and we did not find any benefit from attempting to garbage-
collect old constraints, so hopCoP retains all constraints it learns.

It is still necessary to efficiently find conflicts among this large set when
adding atoms to the trail. This is done by a 1-watched-literal scheme [24]: there
is no need for the 2-watched-literal scheme popular in SAT solving, as all atoms
have the same polarity and unit propagation is of little use. More than one
conflict may be found when adding an atom to the trail: it is worth trying to
choose conflicts that minimise the resulting learned constraint. hopCoP greedily
chooses the conflict that adds the fewest atoms to the constraint learned so far.

6.2 Computing Explanations

To explain why an inference that connects two literals is not possible, a subset
of the current substitution must be computed that prevents their unification. It
is no doubt possible to construct a complex variable-tracking scheme to do this
quickly, but for our application, the following procedure is acceptably fast.

1. Unify the two literals using a new scratch substitution 7. As the inference
was possible with an empty substitution (but not with o), this must succeed.

2. Record the current state of 7, say 9.

3. For every binding x — ¢ in o we:
(a) Try to unify x and ¢ in 7. If this succeeds, continue the loop at step 3.
(b) Reset 7 to 7o and try to unify = and ¢ again. If successful, go to step 2.
(¢) Exit the loop on failure, retaining x + ¢ in 7.

After this procedure, T should contain the necessary subset of o. A similar routine
can be used to determine why a disequation is falsified.

* lhttps://github.com/MichaelRawson /hopcop, commit a4a0f66
5 starting with the annotated conjecture clauses (-conj) and preventing input clauses
reordering (-nopaths)

https://github.com/MichaelRawson/hopcop

12 Rawson et al.

6.3 Experiments

Table 1. The number of extension steps tried in order to determine that there is no
closed tableau of a certain depth on PUZ005-1. A proof exists at depth 8.

depth 1 2 3 4 5 6 7
meanCoP 1 4 24 108 535 9,963 6,445,008
hopCoP 1 4 89 495 2,309 10,066 48,517

Having gone to some effort to reduce backtracking in theory, we wish to know
whether this also helps in practice. We first manually inspected the behaviour of
both meanCoP and hopCoP on problems taken from the PUZ domain of TPTP.
meanCoP reports the number of successfully applied extension steps required to
exhaust each iterative deepening level, so we instrumented hopCoP to do the
same. Table [1| shows the number of steps required for PUZOOS—lﬂ At lower iter-
ative deepening levels, the result is mixed due to differences in search decisions
and meanCoP’s lemma rule, but hopCoP typically extends a clear lead at higher
levels. meanCoP maintains a much higher rate of inference: our implementa-
tion is not highly optimised, but we suspect that the overhead of maintaining
the learned constraints would cause significant inferences-per-second overhead
compared to meanCoP even if it were.

hopCoP also ran head-to-head against meanCoP on several popular first-order
benchmark sets: FOF and CNF problems from TPTP version 9.0.0 [39], the
MPTP challenge problems [I] in bushy and chainy variants, and the Miz40 ATP-
minimised set [20], of which M2k is a subset. Both systems were given a time limit
of 10 seconds per problem and meanCoP was configured with --conj --nopaths
(to better match hopCoP, see above). We also ran meanCoP with the additional
--cut argument, which we call 'meanCoP: this renders meanCoP incomplete in
exchange for significantly reduced backtracking.

We do not wish to claim anything about the relative strength of the systems,
only that the data are consistent with the hypothesis that the reduction in
backtracking achieved overcomes the overhead in terms of inferences-per-second
speed. Table [2] shows the number of solved problems. Readers may also be inter-
ested in the very thorough experimental data in Féarber’s discussion of various
backtracking schemes [14].

7 Related Work

The most directly related work is the various fixed restrictions on backtracking
in connection tableau [27/T4]: these are by nature incomplete, but effective. Older
techniques such as failure caching |3] also achieve a reduction in backtracking and

S the first CNF problem of moderate difficulty in the PUZ domain

Constraint Learning for Non-Confluent Proof Search 13

Table 2. Theorems proved in 10 seconds by hopCoP, meanCoP, and !meanCoP on
various benchmark sets.

M2k Miz40 bushy chainy TPTP

meanCoP 795 7,592 480 157 3,578
ImeanCoP 878 9,748 562 337 3,283
hopCoP 1,050 13,040 589 203 4,026

remain complete, but with different mechanisms. The Goéland tableau system
exchanges substitution information [9] between concurrent branch explorations:
this is likely to reduce backtracking, but again with a different mechanism. En-
codings of connection-driven search into SAT or SMT, such as ChewTPTP [12],
are complete and will also learn constraints during proof search, but behave very
differently and are mostly encoded upfront.

We ourselves have tried various encodings [I3] of connection methods into
SAT and SMT via user propagation [T15]. We found that SAT/SMT solvers,
even with a lazy user-propagator encoding, are not a good match for this kind
of proof search, as their internal heuristics have no knowledge of the current
state of the tableau. The solver will, for instance, very happily decide or propa-
gate variables that encode some sub-tableau completely disconnected from the
current state. Refined encodings such as in Section [5] improve the encoding’s
performance, but allow the solver to partially apply inferences: we are not sure
of the performance merits of this, but it is highly confusing.

The first author has also investigated generating SAT clauses from instances
of clauses found in connection tableau during search [34], as a kind of instance-
based method [16]. When the set of SAT clauses becomes unsatisfiable, it shows
that the input clause set was also unsatisfiable. While an extension of this
instance-generation approach can be used to influence the connection tableau
search, it is not the core of the method, unlike the constraint learning approach
here. The two are largely orthogonal and could be combined profitably.

Other work that is highly related but may be confusing is the concept of
backjumping in modal and other tableau [17]: the concept and its origins appears
to be similar, but it is used to avoid logical conflicts on a branch when looking for
a model, rather than to avoid getting stuck when looking for a closed tableau.
The MeTTel? tableau prover generator [40] has generic support for a similar
kind of backjumping, which it calls conflict-directed backjumping.

8 Outlook

We have integrated a constraint learning approach to guide search and reduce
backtracking into a prototype first-order connection theorem prover hopCoP and
observe that it reduces the search space significantly, which translates into prac-
tical performance. A trade-off is memory use: constraints have to be kept some-
where. This was not excessive in our experience, but may prevent running hop-
CoP on your iPod® [30].

14 Rawson et al.

It is likely that other non-confluent tableau calculi may benefit from such an
approach. We would also be interested in the intersection of this kind of learning
with the machine kind of learning: constraint learning could reduce the options
available to a learned heuristic, while a good learned heuristic might rapidly
learn useful constraints.

There are some areas for further improvement to the technique. The most ir-
ritating are the explicit positions present in the constraint language, which limits
the application of learned constraints. Eliminating this would require detecting
conflicts modulo structurally equivalent positions, which we suspect may be dif-
ficult to do efficiently. A future lean implementation may help with this, perhaps
based on the recent realisation that backjumping is exception handling [35].

Acknowledgments. We are grateful to Michael Féarber in particular for his meanCoP
tool and stimulating discussions on this and related topics. This research was funded in
whole or in part by the ERC Consolidator Grant ARTIST 101002685, the ERC Proof
of Concept Grant LEARN 101213411, the TU Wien Doctoral College SecInt, the FWF
SpyCoDe Grant 10.55776/F85, the WWTF grant ForSmart 10.47379/ICT22007, and
the Amazon Research Award 2023 QuAT.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alama, J., Heskes, T., Kiihlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191-213 (2014). https://doi.org/10.1007/S10817-013-9286-5

2. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193-214
(1981). [https: //doi.org/10.1145/322248.322249

3. Astrachan, O.L., Stickel, M.E.: Caching and lemmaizing in model elimination the-
orem provers. In: Kapur, D. (ed.) CADE. LNCS, vol. 607, pp. 224-238. Springer
(1992). https://doi.org/10.1007/3-540-55602-8 168

4. Backeman, P., Riimmer, P.: Theorem proving with bounded rigid e-unification.
In: Automated Deduction - CADE-25 - 25th International Conference on Auto-
mated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Lecture Notes
in Computer Science, vol. 9195, pp. 572-587. Springer (2015). https://doi.org/10.
1007/978-3-319-21401-6 39, https://doi.org/10.1007/978-3-319-21401-6 39

5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability - Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336, pp. 1267-1329. IOS Press (2021). https://doi.org/10.3233/FATA201017

6. Bibel, W.: Automated theorem proving, 2nd Edition. Artificial intelligence, Vieweg
(1987), |https://www.worldcat.org/oclc/16641802

7. Bjgrner, N.S., Eisenhofer, C., Kovacs, L.: Satisfiability modulo custom theories in
Z3. In: Dragoi, C., Emmi, M., Wang, J. (eds.) VMCAI LNCS, vol. 13881, pp.
91-105. Springer (2023). https://doi.org/10.1007/978-3-031-24950-1 5

8. Brand, D.: Proving theorems with the modification method. STAM J. Comput.
4(4), 412-430 (1975). https://doi.org/10.1137,/0204036

https://doi.org/10.1007/S10817-013-9286-5
https://doi.org/10.1007/S10817-013-9286-5
https://doi.org/10.1145/322248.322249
https://doi.org/10.1145/322248.322249
https://doi.org/10.1007/3-540-55602-8_168
https://doi.org/10.1007/3-540-55602-8_168
https://doi.org/10.1007/978-3-319-21401-6_39
https://doi.org/10.1007/978-3-319-21401-6_39
https://doi.org/10.1007/978-3-319-21401-6_39
https://doi.org/10.1007/978-3-319-21401-6_39
https://doi.org/10.1007/978-3-319-21401-6_39
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://www.worldcat.org/oclc/16641802
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1137/0204036
https://doi.org/10.1137/0204036

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Constraint Learning for Non-Confluent Proof Search 15

Cailler, J., Rosain, J., Delahaye, D., Robillard, S., Bouziane, H.: Goéland: A concur-
rent tableau-based theorem prover (system description). In: Blanchette, J., Kovécs,
L., Pattinson, D. (eds.) IJCAR. LNCS, vol. 13385, pp. 359-368. Springer (2022).
https://doi.org/10.1007/978-3-031-10769-6 22

D’Agostino, M., Gabbay, D.M., Hiahnle, R., Posegga, J., (eds): Handbook of tableau
methods. J. Log. Lang. Inf. 10(4), 518-523 (2001). https://doi.org/10.1023/A:
1017520120752

Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: Pro-
ceedings of the 5th National Conference on Artificial Intelligence. pp. 178-185. Mor-
gan Kaufmann (1986), http://www.aaal.org/Library/AAAI/1986/aaai86-029.php
Deshane, T., Hu, W., Jablonski, P., Lin, H., Lynch, C., McGregor, R.E.: Encoding
first order proofs in SAT. In: CADE. LNCS, vol. 4603, pp. 476-491. Springer (2007).
https://doi.org/10.1007/978-3-540-73595-3 35

Eisenhofer, C., Rawson, M., Kovacs, L.: Spanning matrices via satisfiability solving
(2025). |https: / /doi.org/to-appear, appears in the same TABLEAUX’25 inproceed-
ing

Farber, M.: A curiously effective backtracking strategy for connection tableaux.
In: Otten, J., Bibel, W. (eds.) AReCCa. CEUR Workshop Proceedings, vol. 3613,
pp. 23-40. CEUR-WS.org (2023), |https://ceur-ws.org/Vol-3613/AReCCa2023
paper2.pdf’

Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.:
IPASIR-UP: user propagators for CDCL. In: Mahajan, M., Slivovsky, F. (eds.)
SAT. LIPIcs, vol. 271, pp. 8:1-8:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik (2023). https://doi.org/10.4230/LIPICS.SAT.2023.8

Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem prov-
ing. In: LICS. pp. 55-64. IEEE Computer Society (2003). |https://doi.org/10.1109/
LICS.2003.1210045

Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau.
In: de Swart, H.C.M. (ed.) TABLEAUX. LNCS, vol. 1397, pp. 187-201. Springer
(1998). |https://doi.org/10.1007/3-540-69778-0 22

ISO/IEC: Information technology — Programming languages — Prolog — Part 1:
General Core. Standard, International Organization for Standardization (1995)
Kaliszyk, C.: Efficient low-level connection tableaux. In: de Nivelle, H. (ed.)
TABLEAUX. LNCS, vol. 9323, pp. 102-111. Springer (2015). https://doi.org/10.
1007/978-3-319-24312-2 8

Kaliszyk, C., Urban, J., Michalewski, H., Olsak, M.: Reinforcement learning of
theorem proving. In: NeurIPS. pp. 8836-8847 (2018), https://proceedings.neurips.
cc/paper /2018 /hash/55acf8539596d25624059980986aaa78- Abstract.html

Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Handbook of Automated Reasoning (in 2 volumes), pp. 2015-2114. Elsevier and
MIT Press (2001). https://doi.org/10.1016/B978-044450813-3/50030-8

Loveland, D.W.: Mechanical theorem-proving by model elimination. J. ACM 15(2),
236-251 (1968). https://doi.org/10.1145/321450.321456

Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35-60 (2008). https://doi.org/10.1007/S10817-007-9085-Y
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: En-
gineering an efficient SAT solver. In: DAC. pp. 530-535. ACM (2001). https:
//doi.org/10.1145/378239.379017

Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning (in 2 volumes), pp. 371-443 (2001). https://doi.org/10.
1016,/B978-044450813-3/50009-6

https://doi.org/10.1007/978-3-031-10769-6_22
https://doi.org/10.1007/978-3-031-10769-6_22
https://doi.org/10.1023/A:1017520120752
https://doi.org/10.1023/A:1017520120752
https://doi.org/10.1023/A:1017520120752
https://doi.org/10.1023/A:1017520120752
http://www.aaai.org/Library/AAAI/1986/aaai86-029.php
https://doi.org/10.1007/978-3-540-73595-3_35
https://doi.org/10.1007/978-3-540-73595-3_35
https://doi.org/to-appear
https://doi.org/to-appear
https://ceur-ws.org/Vol-3613/AReCCa2023_paper2.pdf
https://ceur-ws.org/Vol-3613/AReCCa2023_paper2.pdf
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.1109/LICS.2003.1210045
https://doi.org/10.1109/LICS.2003.1210045
https://doi.org/10.1109/LICS.2003.1210045
https://doi.org/10.1109/LICS.2003.1210045
https://doi.org/10.1007/3-540-69778-0_22
https://doi.org/10.1007/3-540-69778-0_22
https://doi.org/10.1007/978-3-319-24312-2_8
https://doi.org/10.1007/978-3-319-24312-2_8
https://doi.org/10.1007/978-3-319-24312-2_8
https://doi.org/10.1007/978-3-319-24312-2_8
https://proceedings.neurips.cc/paper/2018/hash/55acf8539596d25624059980986aaa78-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55acf8539596d25624059980986aaa78-Abstract.html
https://doi.org/10.1016/B978-044450813-3/50030-8
https://doi.org/10.1016/B978-044450813-3/50030-8
https://doi.org/10.1145/321450.321456
https://doi.org/10.1145/321450.321456
https://doi.org/10.1007/S10817-007-9085-Y
https://doi.org/10.1007/S10817-007-9085-Y
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1016/B978-044450813-3/50009-6
https://doi.org/10.1016/B978-044450813-3/50009-6
https://doi.org/10.1016/B978-044450813-3/50009-6
https://doi.org/10.1016/B978-044450813-3/50009-6

16

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Rawson et al.

Otten, J.: leanCoP 2.0 and ileancop 1.2: High performance lean theorem proving in
classical and intuitionistic logic (system descriptions). In: IJCAR. LNCS, vol. 5195,
pp. 283—-291. Springer (2008). https://doi.org/10.1007/978-3-540-71070-7 23
Otten, J.: Restricting backtracking in connection calculi. Al Commun. 23(2-3),
159-182 (2010). https://doi.org/10.3233 /AIC-2010-0464

Otten, J.: MleanCoP: A connection prover for first-order modal logic. In: Demri, S.,
Kapur, D., Weidenbach, C. (eds.) IJCAR. LNCS, vol. 8562, pp. 269-276. Springer
(2014). https://doi.org/10.1007/978-3-319-08587-6 20

Otten, J.: nanoCoP: A non-clausal connection prover. In: IJCAR. LNCS, vol. 9706,
pp. 302-312. Springer (2016). https://doi.org/10.1007/978-3-319-40229-1 21
Otten, J.: The pocket reasoner — automatic reasoning on small devices. In: NIK.
Bibsys Open Journal Systems, Norway (2018), https://ojs.bibsys.no/index.php/
NIK /article/view/512

Otten, J.: 20 years of leanCoP - an overview of the provers. In: AReCCa.
CEUR Workshop Proceedings, vol. 3613, pp. 4-22. CEUR-WS.org (2023), https:
/ /ceur-ws.org/Vol-3613/AReCCa2023 paperl.pdf

Paskevich, A.: Connection tableaux with lazy paramodulation. J. Autom. Reason.
40(2-3), 179-194 (2008). [https: //doi.org/10.1007/S10817-007-9089-7} https://doi.
org/10.1007/s10817-007-9089-7

Prusak, G., Kaliszyk, C.: Lazy paramodulation in practice. In: Proceedings of the
Workshop on Practical Aspects of Automated Reasoning Co-located with the 11th
International Joint Conference on Automated Reasoning (FLoC/IJCAR 2022),
Haifa, Israel, August, 11 - 12, 2022. CEUR Workshop Proceedings, vol. 3201.
CEUR-WS.org (2022), https://ceur-ws.org/Vol-3201/paper3.pdf

Rawson, M., Reger, G.: Eliminating models during model elimination. In: Das,
A., Negri, S. (eds.) TABLEAUX. LNCS, vol. 12842, pp. 250-265. Springer (2021).
https://doi.org/10.1007/978-3-030-86059-2 15

Robbins, E., King, A., Howe, J.M.: Backjumping is exception handling. The-
ory Pract. Log. Program. 21(2), 125-144 (2021). https://doi.org/10.1017/
S51471068420000435

Rgmming, F., Otten, J., Holden, S.B.: Connections: Markov decision processes
for classical, intuitionistic and modal connection calculi. In: AReCCa. CEUR
Workshop Proceedings, vol. 3613, pp. 107-118. CEUR-WS.org (2023), https:
//ceur-ws.org/Vol-3613/AReCCa2023 paper8.pdf

Silva, J.P.M., Sakallah, K.A.: GRASP — a new search algorithm for satisfiability.
In: ICCAD. pp. 220-227. IEEE Computer Society / ACM (1996). https://doi.org/
10.1109/ICCAD.1996.569607

Stickel, M.E.: A Prolog technology theorem prover. In: 9th International Con-
ference on Automated Deduction, Argonne, Illinois, USA, May 23-26, 1988, Pro-
ceedings. LNCS, vol. 310, pp. 752-753. Springer (1988). https://doi.org/10.1007/
BEB00128&81

Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to THO, TPTP v6.4.0. J. Autom. Reason. 59(4), 483-502 (2017). https://doi.org/
10.1007/S10817-017-9407-7

Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator
MetTeL?. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA. LNCS, vol. 7519,
pp. 492-495. Springer (2012). https://doi.org/10.1007/978-3-642-33353-8 41
Wernhard, C., Bibel, W.: Investigations into proof structures. J. Autom. Reason.
68(4), 24 (2024). https://doi.org/10.1007/S10817-024-09711-8

https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.3233/AIC-2010-0464
https://doi.org/10.3233/AIC-2010-0464
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-319-40229-1_21
https://doi.org/10.1007/978-3-319-40229-1_21
https://ojs.bibsys.no/index.php/NIK/article/view/512
https://ojs.bibsys.no/index.php/NIK/article/view/512
https://ceur-ws.org/Vol-3613/AReCCa2023_paper1.pdf
https://ceur-ws.org/Vol-3613/AReCCa2023_paper1.pdf
https://doi.org/10.1007/S10817-007-9089-7
https://doi.org/10.1007/S10817-007-9089-7
https://doi.org/10.1007/s10817-007-9089-7
https://doi.org/10.1007/s10817-007-9089-7
https://ceur-ws.org/Vol-3201/paper3.pdf
https://doi.org/10.1007/978-3-030-86059-2_15
https://doi.org/10.1007/978-3-030-86059-2_15
https://doi.org/10.1017/S1471068420000435
https://doi.org/10.1017/S1471068420000435
https://doi.org/10.1017/S1471068420000435
https://doi.org/10.1017/S1471068420000435
https://ceur-ws.org/Vol-3613/AReCCa2023_paper8.pdf
https://ceur-ws.org/Vol-3613/AReCCa2023_paper8.pdf
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/BFB0012881
https://doi.org/10.1007/BFB0012881
https://doi.org/10.1007/BFB0012881
https://doi.org/10.1007/BFB0012881
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/S10817-017-9407-7
https://doi.org/10.1007/978-3-642-33353-8_41
https://doi.org/10.1007/978-3-642-33353-8_41
https://doi.org/10.1007/S10817-024-09711-8
https://doi.org/10.1007/S10817-024-09711-8

Constraint Learning for Non-Confluent Proof Search 17

42. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover - (system description). In: IJCAR. LNCS, vol. 12167, pp. 489-507. Springer
(2020). |https://doi.org/10.1007/978-3-030-51054-1 33

https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

	Constraint Learning for Non-Confluent Proof Search

