Finding Connections via Satisfiability Solving

2 1

Clemens Eisenhofer! ®)@®, Michael Rawson?®, and Laura Kovécs

1 TU Wien, Vienna, Austria
{clemens.eisenhofer,laura.kovacs}@tuwien.ac.at
2 University of Southampton, Southampton, UK
michael@rawsons.uk

Abstract. Commonly used proof strategies by automated reasoners or-
ganise proof search either by ordering-based saturation or by reducing
goals to subgoals. In this paper, we combine these two approaches and
advocate a SAT-based method with symmetry breaking for connection
calculi in first-order logic, with the purpose of further pushing the au-
tomation in first-order classical logic proofs. In contrast to classical ways
of reducing first-order logic to propositional logic, our method encodes
the structure of the proof search itself. We present three distinct SAT
encodings for connection calculi, analyse their theoretical properties, and
discuss the effect of using SAT/SMT solvers on these encodings. We im-
plemented our work in the new solver UPCOP and showcase its practical
feasibility.

1 Introduction

Search strategies employed by automated theorem provers for first-order log-
ics can be divided into two broad classes [16]: ordering-based and subgoal-
reduction. The first class, which contains saturation-based theorem provers in-
cluding VAMPIRE [35], E [54], and SPAsS [60], work by continuously deducing
new facts from an existing set of formulas and expanding the search space with
these new facts. The second class, containing systems such as SETHEO [38] or
leanCoP [45], works by manipulating a partial proof and implementing back-
tracking if necessary.

The subgoal-reduction class has the disadvantage that redundant, “useless”,
formulas in the search space may be explored in duplicate manner, unless spe-
cial care is taken to “remember” where the prover has already been before.
Avoiding such redundant cases for the purpose of efficient reasoning is a subject
of great interest. Therefore, global refinement within the subgoal-reduction ap-
proach to theorem proving has been proposed and investigated [11]. In general,
such refinements can contain non-trivial propositional structure; for example,
the information “if clauses C' and D are in the current proof attempt, and the
current substitution binds x — t and y — s, we are in a dead-end and have to
backtrack” is a hard formula to reason with.

Backtracking mechanisms are routinely implemented in Boolean satisfiability
(SAT) solvers [13], for the purpose of refining the (partial) proof. Modern SAT

http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0002-8299-2714

2 Eisenhofer et al.

solvers learn relevant information as they go, and even allow users to add con-
straints during the solver’s search for a model, in response to the solver’s current
(partial) assignment. When a SAT solver cannot find a satisfying assignment,
an explanation in the form of an unsat core is given. In this paper, we exam-
ine these learning and explanation features in the context of first-order theorem
proving, which usually makes SAT solvers an ideal vehicle for managing global
information and their refinements.

Here we are interested in the integration of SAT solving and subgoal-reduction,
focusing on Bibel’s connection method [10]. Connection methods yield powerful
calculi for automation of expressive logics, for example, for classical first-order
logic [10,38], higher-order logic [2], linear logic [31], and several modal logics [46].
Our work directly encodes the search for connection proofs as a Boolean satisfi-
ability problem, allowing the solver to dictate search decisions and respond by
asserting constraints, such that when a satisfying assignment is reached, it repre-
sents a complete proof. To this end, we introduce three encodings of connections
(Sections 3-5) and show their complementary nature and power (Section 7).

First, we present our method applied to connection tableauz (Section 3) and
highlight some unfortunate properties of this setting. Therefore, we refine our
encoding of the connection calculus using a matrix form (Section 4). Further, we
describe how unsat cores can be used to guide iterative deepening during SAT
solving (Section 5). The resulting encodings allow many global refinements that
are usually not feasible within other methods (Section 6).

Our work intends for the SAT solver to return a satisfying assignment of
our constraints, where the model encodes a finished proof: matrix or tableau.
In other words, we represent a first-order proof as a propositional model. This
contrasts with most other uses of SAT solvers in theorem proving in which
ground unsatisfiability is the aim [59], often witnessing Herbrand-style refutation
by instantiation of first-order clauses.

The practical use of our approach is showcased by evaluating our work on the
TPTP repository of first-order problems [57]. To this end, we provide a proof-
of-concept implementations of our techniques in our new solver UPCOP, where
UPCOP uses either the CADICAL SAT solver [12] and the Z3 SMT solver [43].
When evaluating UPCOP against the state-of-the-art meanCoP solver [28], our
experimental findings demonstrate that our work can solve 179 problems that
meanCoP cannot (Section 7).

Summary of Contributions.

1. We encode the existence of first-order connection calculi proofs as Boolean
satisfiability problem, using connection tableaux (Section 3), a matrix rep-
resentation (Section 4), and iterative deepening via unsat core refinement
(Section 5). We show soundness and completeness of our encodings.

2. We explore optimisations to reduce redundancy and symmetry in the encod-
ings (Section 6).

3. We discuss our implementation of the encodings in the new prototype solver
UPCOP and evaluate it on the TPTP benchmark set (Section 7).

Finding Connections via Satisfiability Solving 3

2 Preliminaries

We use standard syntax and semantics of classical first-order logic [56]. Log-
ical objects such as terms t may be indexed: t; We assume the input prob-
lem has been negated and converted to conjunctive normal form (CNF) by a
satisfiability-preserving transformation [4]. However, this transformation is op-
tional in theory [10].

2.1 Satisfiability Solving

We assume familiarity with Boolean satisfiability (SAT) solving [14] and satisfi-
ability modulo theories (SMT) [58]. In addition to the basic decision procedure
for Boolean formulas, many SAT solvers support solving under assumptions and
unsatisfiable cores. Solving under assumptions allows fixing some literals tem-
porarily for the duration of a solving run: afterwards, the solver “forgets” them
and their consequences. If the solver detects that the problem is unsatisfiable
under assumptions, it may extract a subset of the assumptions used to derive
inconsistency: the so-called “unsat core”. Cores may not be minimal, so incon-
sistency can be derived with a strict subset of the core. Minimal cores can be
generated at additional computational cost [21,40].

Some SAT and SMT solvers, including CADICAL [30] and Z3 [15], allow the
user to intervene during search by a variety of means, often under the title “user
propagation”. Such mechanisms allow employing a solver to tackle a broad class
of problems efficiently. For our purposes, we assume we can be notified when
a SAT variable is assigned true or false, and respond by asserting additional
constraints, potentially containing fresh SAT variables. We write Jy,...,J, IF F
to represent that we added (propagated) the constraint J; A ... A J, = F for
some formula F' to the solver, given that the solver’s current model satisfies all
antecedent literals Jp, ..., J,. This feature allows us to avoid eagerly generating
an extensive set of all possible constraints and add only the currently relevant
parts of the encoding. This kind of lazy generation is desirable in our case.

2.2 Connection Tableaux

Connection tableaux are essentially clausal tableaux [25] with the additional
constraint that each clause added to a branch must have at least one literal
connected to the current leaf literal [39]. Two literals are connected if they have
the same atom but opposite polarity: they are dual. Recall that in the first-order
case, clauses in the tableau have their variables renamed apart from any other,
and a global substitution o is applied to the entire tableau to connect literals
(unification). The connection tableau calculus is not confluent and requires both
backtracking and a fair enumeration of tableaux for completeness.

We say that two literals L, K can be connected and write L o<1 K if there
exists some substitution p such that p(L) is connected to p(K). A subset of input
clauses are considered potential roots of the tableau [39]: we assume these start
clauses (conjectures) have been chosen in a way that at least one conjecture

4 Eisenhofer et al.

| /\
SIN, m\ (

Fig. 1: Connection tableau rules, left-to-right: start, extension, and reduction. In
start and extension, L'V ...V K is a freshly-renamed copy of a clause from the
input problem. In extension and reduction, L is connected to L’ using o.

can be used for finding a proof. Equality is not handled by the basic connection
calculus, and it is either axiomatised [44] or preprocessed away by some variation
of Brand’s modification [18]. We sometimes write C* to distinguish the &** copy
of the input clause C, indexing its variables as x*.

Conventionally, three operations manipulate connection tableaux, shown in
Figure 1. Start operations pick a start clause and add it at the root of the tableau.
The chosen clause’s literals are the initial leaves of the tableau. Extension op-
erations add a copy of a clause from the input clause set below a leaf literal of
the tableau, connecting at least one of the newly added clause’s literals with the
leaf. Reduction operations connect a leaf literal with another literal on the path
from the literal toward the tableau’s root. A branch of the tableau is closed in
case the leaf of that branch is connected to some other literal. The whole tableau
is closed, thus representing a proof if all of its branches are closed. In general,
all these operations must be backtracked over to achieve completeness.

2.3 The Connection Method, Matrices, and Spanning Connections

Connection tableaux are an instance of the connection method [10]. While con-
nection calculi are a rich topic with many facets, we are primarily interested in
the following matriz representation. We consider matrices in normal form and
thus define a matrix as a non-empty set of rigid clauses; that means, clauses
containing rigid variables. The matrix can contain an arbitrary number of rigid
copies of the same input clause, where variables are renamed apart, and a global
substitution o is applied. A path through a matrix is a set that contains exactly
one literal from each copy of the clause in the matrix and is called closed if it
contains at least one connected pair of literals, otherwise open. A matriz proof,
or a matrix with a spanning set of connections, is a matrix for which there are
no open paths.

Further, a matrix is fully connected with respect to a set of connections if
each literal in the matrix is connected to at least one other literal of a different
clause [37]. A matrix proof M is minimal if there is no proof using only a strict
subset of M. Although we can require that there is at least one conjecture in the

Finding Connections via Satisfiability Solving 5
/ \
P(z") P(f(z")
2NN
-P(zt) —P(f(y') -P@®) -P(f(y*))

(a) Tableau proof with curved lines indicating connections.
o is computed such that, e.g., o(z*) = f(y").

~_ -

(b) Same proof in matrix form (¢) A matrix that does not represent a
proof. An open path is shown in bold.

Fig. 2: Connection calculus derivations

matrix we could consider as a start clause, there is, in contrast to connection
tableau proofs, no inherent tree structure in matrix proofs.

Ezxample 1. To illustrate the two representations, consider the unsatisfiable set
{ Vavy. —=P(x) VvV -P(f(y)), Vz. P(z)V P(f(2)) }

and compare matrix and tableau refutations thereof in Figure 2a and 2b3. Fig-
ure 2c shows a fully connected matrix that is not a proof as it has an open path.

3 Encoding Connection Tableaux

We first encode the search for closed connection tableaux (Section 2.2) in a SAT
solver. A closed connection tableau is explicitly constructed from a satisfying as-
signment. We encode that a literal L is a leaf of the tableau at path U using a SAT
variable (L; U), where U is a set of literals labelling the nodes from L towards
the root. L and U are used only to determine the corresponding variable. For
example, =P(x?) in Figure 2a is represented by a variable (=P (z?); {P(f(z1))}).
The substitution o and unification of connected literals are handled with another
family of variables we discuss later.

3 the literals of each clause are written vertically in columns and the order of the
clause copies does not matter

6 Eisenhofer et al.

Connection tableau rules as SAT. We begin by asserting that at least one
start clause S must be present in the tableau. Therefore, all literals L € S must
be in the tableau at the root:

VA (&:0) (1)

S LeS

The SAT solver is free to choose any start clause .S, but all literals in the chosen S
must be present at the root of the tableau. As the solver assigns variables (L; U)
true we respond by propagating additional requirements. We demand that each
literal has either an extension Ec g or a reduction Ry applied, in order to close
the corresponding branch in the final tableau:

(L;U)YIF \/ Ecx v \/ Rk (2)
C,K KeU

Each formula E¢ g represents applying an extension operation at L using a fresh
copy of a clause C' containing a literal K < L, which yields

Box = [(L~ K)A N (KH{LYUU) (3)

K'eC

K'£K
i.e. that if an extension step E¢ i is taken, L and K are connected and other
literals K’ € C must be in the tableau with path {L} UU. We write (L ~ K) for
the SAT variable representing that L and K are connected modulo ¢. Similarly,

Ry = (L ~ K) (4)

where K > L and K € U. The steps Ec g and Rg are computed based only
on the possible connection relation >i: the current global substitution ¢ main-
tained by the SAT solver is ignored, otherwise relevant cases may be missed on
backtracking. Iterative deepening may be applied as usual [45], for example, by
offering no E¢ i options if the path length |U| exceeds the depth limit.

Ezxample 2. Consider the input clauses from Example 1 and assume the solver
assigned literal (~P(22); {P(f(z!))}) true, so the solver considers literal —P(x?)
to be within the tableau, below P(f(z!)). The solver propagates

(=P(a?); {P(f(z"))}) IF

where the first two disjuncts represent applications of the extension rule and the
last an application of reduction.

Finding Connections via Satisfiability Solving 7

Unification Constraints. Variables (L ~ K) constrain o such that o (L) is con-
nected to o(K). When the SAT solver assigns such a literal, we check whether
this is consistent with the existing set of constraints. This can be done by ap-
plying a unification algorithm, perhaps using an efficient data structure such as
the variable trail [39] to handle backtracking. We note in passing that algebraic
datatype solvers [7], which are supported by many SMT solvers, implement a
similar decision procedure. If the constraints are not satisfiable, we produce a
conflict clause containing the reasons as Boolean assignments. For example, if
we have (L ~ K), (J ~ K) and (L ~ J), but (L ~ K) A (L ~ J) is already
unsatisfiable, we add the conflict

(L~ K) VL~ J) (5)

causing the solver to backtrack. This approach also allows a uniform treatment
of refinements such as regularity based on disequation constraints [39)].

SAT Encoding of Closed Connection Tableaux. We now have all the ingre-
dients for our SAT encoding, which we denote by Er. By asserting that (i) a start
clause must be present (1), (ii) each literal in the tableau must have a reduction
or extension rule applied to it (2) and (iii) connections must have a consistent
unifier, enforced by unification constraints, our encoding £r is finished. Each
propositional model of £ represents a closed connection tableau.

Pathological Behaviour. Our SAT encoding £r has drawbacks. Importantly,
extension adds a fresh instance from the clause set to the tableau, and so the
number of different SAT variables (L;U) grows rapidly. In turn, this means
the resulting SAT problem has only limited propositional structure between
variables that the solver can exploit. Search tends to degrade towards the kind of
exhaustive enumeration of possible derivations that systems such as leanCoP [45]
efficiently implement, but with the added overhead of a SAT solver.

4 Encoding Matrix Proofs

To avoid the previously described problems of £r, we encode matrix proofs (see
Section 2.3). We denote our matrix-based encoding &y;. Most search routines for
spanning sets of connections presented in literature [10,45] restrict connections
such that proofs are, or could be, simulated by a connection tableau proof [36]. In
our &)y encoding, we allow arbitrary connections between clauses in the matrix.
In this way, a single matrix proof can correspond to numerous tableau proofs [37].
In any event, our new representation £,; produces a combinatorial problem
of finding connections between a set of clauses, which we argue is much more
suitable for SAT solvers than Er.

4.1 Encoding Overview
We find a matrix proof with a given resource limit and split reasoning in:

1. We encode constraints for a fully-connected matrix (Section 4.2).

8 Eisenhofer et al.

2. We constrain that the result has a set of spanning connections (Section 4.3).
We use the following result to motivate our encoding.

Theorem 1 (Fully Connected Matrix). Suppose M is a minimal matric
proof with a spanning set of connections. Then M is fully connected.

Proof. First, note that this is similar but not identical to Proposition 1 in Letz’s
work on matings pruning [37]. Suppose, towards contradiction, there is a literal
L € C € M that is not connected to any other K. Now consider the rest of the
matrix M’ = M \ {C}. Since M is minimal, there is an open path U through
M’ as otherwise M’ would have a spanning set of connections. As L is not
connected to any literal, U U {L} is an open path for M, which conflicts with
our assumption of M being a proof.

Theorem 1 allows us to restrict our work to fully-connected matrices. This re-
striction is a good approximation, as few fully-connected matrices do not have
a spanning set of connections in practice (see Section 7). We use SAT variables
of the form S¢ to denote that clause C appears in the matrix, sometimes su-
perscripted S to indicate selecting C*, the k'" copy of C. We call these Sc
selectors and call C selected if S¢ is assigned true. At least one of the start
clauses C' must be selected, cf. (1):

\V se. (6)

In Section 3, we apply iterative deepening on the maximum length of a branch.
This kind of resource limit cannot be used here, as there is no obvious notion of
a branch, so we must devise alternatives. We first apply iterative deepening on
the matrix’s number d of clauses. We immediately see that we need to introduce
at most d selectors for each clause. As we always refer to the same copies, the
solver can more easily learn sensible conflicts from £y; than from Er. We discuss
a further enhanced encoding later in Section 5.

4.2 Fully Connected Matrices

By Theorem 1, we may constrain that each literal in the matrix must connect
to at least one other literal. Similarly to (2), we respond to a selection S¢
by propagating that each literal must be connected to some other literal in
another clause in the matrix by enumerating all possible connections. This other
clause could be selected or require selection, but there is no distinction between
extension and reduction. Suppose C is selected. For each L € C, we propagate

Selk \/ 'V 'V ShA{L~K) (7)

1<k<d KeD¥

where K < L is a literal in the input clause D we connect to, and k indicates
which copy DF of that clause is used.

Finding Connections via Satisfiability Solving 9

There are several possible options to enforce that at most d clauses are se-
lected for the matrix. We suggest using pseudo-Boolean constraints [20] or a
direct encoding [5,14,55] to constrain that “there are no more than d selector
variables assigned”. We can strengthen this to ezactly d as we apply iterative
deepening, so the less-than-d case was encountered already.

Ezxample 3. Assume the situation
{ Sbeyvr(r=)r “Sip@v-prw) (P ~=Pah)), (P(z') ~=P(f(y") }

which corresponds to the situation in Figure 2c¢ without the 3'¢ clause. Assum-
ing that there are at most two copies of each clause, we would propagate that
P(f(2')) needs to connect somehow. That means,

Shvpiey P (Sip(mvﬁp(f(y)) N(P(f(1) ~=P(a))) v
(2 popvmrirn A PUED) ~ =P(f(Y)
(52 peyv-riran N PUED) ~ ~Pa?)

(82 ptayvmrron A PUED) ~ =PU)

These are all possible options given the available clauses and their copies.

4.3 Spanning Sets of Connections

Once we have a fully connected matrix, we check for open paths (see Section 2.3).
If there are none, we are done and can use the resulting SAT model to output
the proof, consisting of the selected clauses, the connections, and the global
substitution. Suppose instead there is an open path U — given by the set of
literals — through the matrix M. At least two literals along U must connect to
make M a proof. Let S be the set of selectors assigned true. Propagating

Sk \/ (L~K) (8)
{L.K}CU

forces the solver to “fix” M, likely via backtracking, by requiring that U is not
an open path.

Ezxample 4. Continuing Example 3, assume the SAT solver further assigns

{ S p@yv-prirwy: PUED) ~=P(f(y*)), (P(') ~ ~P(z?)) }

true. The result is the fully connected matrix, which is shown in Figure 2c. We
cannot propagate further clauses that are not already satisfied. However, we can
find the open path { P(f(z!)), =P(f(y')),=P(x?) }, which we exclude with

1 1 2
SPEVP(F () S P@)v=P(f(5)) S~Pa)v-P(f() T
(P(f(z") ~=P(f(y")) V(P(f(z")) ~ =P(z?)).

As neither (P(f(z')) ~ =P(f(y"))) nor (P(f(z')) ~ =P(z?)) results in a
consistent unifier, the SAT solver is required to backtrack.

10 Eisenhofer et al.
4.4 Correctness and Complexity of Matrix Encodings

Encoding &y consists of (6), (7), (8), and constraints for the depth limit. Its
models represent fully-connected matrix proofs. We show soundness, complete-
ness, and termination for a given size d in £y, and describe the respective
complexity class of &yy.

Theorem 2 (Soundness). A propositional model of Eyf represents a matriz
with a spanning set of connections.

Proof. Whenever the SAT solver finds a propositional model, we first check that
it represents a proof, adding constraints if not (Section 4.3).

Theorem 3 (Completeness). If a matriz M together with a spanning set of
connections exists, there is a propositional model of Epr at depth d = |M]|.

Proof. Such a matrix proof M can be represented by setting Sé true iff there are
at least k copies of C' in M. The spanning set of connections is represented by
setting L ~ K iff L is connected to K in the proof. This model of £y, and all its
submodels are consistent modulo the semantics of ~ and all possible instances
of (7). Furthermore, the final model satisfies the depth constraints and contains
at least one start clause. Also, we do not block the model with the final check
in Section 4.3 as the set of connections are spanning.

Theorem 4 (Complexity Bound). Solving our particular encoding Epy is in
the complexity class XF with respect to the input size and the matriz proof size.

Proof. There are polynomially many SAT variables. To see this, let ¢ be the num-
ber of clauses in the input, containing a total of [literals. We have at most d - ¢
selectors SE. We also have O(d?1?) possible connection literals (L ~ K). Hence,
there are only polynomially many instantiations of (7). After adding in the worst
case, all of them, the problem is in NP. We can non-deterministically guess an
assignment for all polynomially many selectors and unification atoms. Check-
ing the model can be done clearly in deterministic polynomial time. Checking
whether a matrix represents a matrix proof is co-NP complete. It can be solved
by a separate SAT solver, which checks if the matrix o(M) represented by the
SAT model is satisfiable. As we can solve £y, in NP with a co-NP oracle, the
problem of solving our encoding for some fixed limit d is in XZ.

As checking the satisfiability of a set of clauses over rigid variables is X7-
complete [33], our approach’s complexity coincides with its theoretical bound.

Corollary 1 (Termination). A run for solving €y at fized d terminates.

Finding Connections via Satisfiability Solving 11

5 Iterative Deepening via Unsat Core Refinement

A downside of our encoding &)y, especially of its constraints from Section 4.2,
is that we eagerly introduce and use selectors for clause instances that are not
required. If there is more than one input clause and the matrix is of size d, not all
clauses can have d copies in the matrix for arithmetic reasons. Therefore, creating
d instances of each clause is overkill. This section addresses this challenge and
improves iterative deepening via unsat cores, resulting in a refined encoding & .

We use an abstraction-refinement [23] approach to approximate the number
of copies required for each clause. This way, we avoid polluting the search space
with likely unnecessary clause instances. Instead of a coarse global limit d, we
estimate how many copies of each clause are required with a multiplicity p [9].
Initially, we have u(C) = 1 for start clauses and p(C) = 0 otherwise. The
multiplicity is monotonically increased based on the unsat core of the following
encoding. We refine constraint (7) to

So Ik \[{ \V \/ ShA(L~K) (9)

1<k<p(D)+1 KeDk

as we have p(D) copies of D. Note that k ranges up to u(D) + 1. We add

temporary assertions* kp 1= -8 g(D)H so that the solver cannot select D#(P)+1,
but can report that finding a proof failed in part due to a lack of copies of D.
We revise (8), as we can no longer assume that a fully connected matrix has
exactly d clauses. A matrix can be fully connected, but the desired matrix proof
may in fact be a strict superset of the current matrix. As (8) is now too strong,
we weaken it to

SEl \ w~r)|v\ F (10)
{L,K}CU LeU
where Fp, is a formula indicating that L could also be connected to another

literal in a clause not yet in the matriz and S a set of selectors as before in (8).

Ezample 5. Assume we have p(P(z) V P(f(2))) = u(—=P(x) V =P(f(y))) := 2
and let us consider Example 3 again. In this propagation, we would have to
gdditionally list the case that Sip(z)vﬁp(f(y)).is true. The case S%(z)vp(f(z))
is not needed, as there is no way to connect it anyway. As we assumed that
Sip(m)vﬁp(f(y)) is false, the SAT solver will not assign it true, but might report
it in its unsat core in case there are feasible ways to proceed, given a higher
depth limit. In Example 4, we would have to list the additional cases:

SIQD(Z)\/P(f(z)) A(=P(f(y")) ~ P(z%)), SIQD(z)vP(f(z)) A{(=P(f(y")) ~ P(f(2*)),

Slzj(z)vP(f(z)) A (~P(2?) ~ P(2%)), SIZD(Z)VP(f(z)) A (=P (z®) ~ P(f(2%))),
3 3
Sp()vP(£(2))7 SoP@V-P(W)

4 named & because it indicates that a clause needs more “x-city”

12 Eisenhofer et al.

As the respective clause selector is assumed false anyway, we do not need to
introduce connectedness atoms for clause copies beyond the depth limit. Slight
variations and optimisations of the encoding, however, would benefit from en-
coding those aspects as well. Further, listing both the second and third copies
of clause P(z) V P(f(z)) shows one source of symmetry discussed in Section 6.

Whenever the SAT solver reports unsatisfiability, we retrieve the unsat core
representing a potentially non-minimal subset of k assertions sufficient to yield
unsatisfiability. We may increase one or more p(C) if the corresponding assertion
occurs in the unsat core. However, to retain completeness, we need to ensure that
we eventually increment the multiplicity of every clause appearing repeatedly in
the unsat core: in other words, we require fairness. In case the core is empty,
we can conclude that no proof exists. As a result, our SAT encoding &; with
improved iterative deepening is given by (6), (9), and (10).

Ezample 6. Consider the input problem
C:= P(a) D :=Vz. -P(x)V P(f(x)) E :=Vy. =P(y)

with C as the start clause. kp will always be contained within the unsat core,
no matter its multiplicity. However, a fair enumeration eventually includes kg.

Our improved encoding £y remains sound and terminating by similar arguments
to Theorems 2 and 4. Completeness requires an adjusted argument.

Theorem 5 (Completeness). If a matriz M together with a spanning set of
connections exists, there is a corresponding propositional model of Ey .

Proof. In addition to Theorem 3, we show that if there is a proof using M which
our current y does not permit, at least one relevant k¢ is contained in the unsat
core. Fairness then ensures we will eventually find the proof. Consider a maximal
subset M’ C M representable at p.

1. If M’ cannot be fully connected, it contains at least one literal L with no
connections. Since M’ is maximal and M can be fully connected, L should
be connected to some literal in a clause D that is not yet in the matrix. This
option is offered in (9), but fails because the respective kp assumption is
forced false. xp is therefore in the unsat core.

2. If M’ can be fully connected, we would have failed to close some open path
U and propagated some instance of (10). Some L € U must connect to at
least one literal of a clause not yet in M’ by the right disjunct of (10). As
M’ is maximal, we can add no clauses, so the constraint fails because of the
K assumption.

A side effect of encoding £y is that it also terminates on some non-theorems.

6 Redundancy Elimination

Restricting the SAT solver’s search space is beneficial when solving the SAT
encodings of Sections 3-5. In addition to standard techniques, such as tautology
elimination [39], we propose some specialised redundancy eliminations.

Finding Connections via Satisfiability Solving 13

6.1 Multiplicity Symmetry

Our encodings from Sections 3-5 contain several symmetries [1], which we now
avoid, rather than break [51]. The first symmetry is that copies of clauses are
interchangeable. Suppose we connect some literal L to literal K in a copy of C
not yet in the matrix, and subsequently fail to find a proof in that direction.
Nothing prevents the SAT solver from selecting another copy of C' and failing
for the same reasons. We avoid this by propagating

SEHIF SE, (11)

enforcing that C? is selected only if CV with j < i are selected.

6.2 Subsumption and Instance Symmetry

Saturation systems often delete a clause C' because it is subsumed [47] by some
more-general clause D. Dynamics in connection systems are somewhat different
as new first-order clauses are not deduced, but we can profit by applying some
subsumption. If two different clauses C' and D are in the current matrix, we can
enforce that neither becomes a subset of the other, modulo ¢°. This restriction
preserves completeness, by Bibel’s Lemma 6.8 [10].

An obvious extension of this idea is removing clauses from the matrix that
are subsumed by other clauses from the input set. This fails, however.

Ezxample 7. Consider the four input clauses
C:=P(a) D:=Q(a) E:=Va. -Plx)VvQ(z) F :=Vy. —-Q(y)

with C' being the only start clause. There is a proof without subsumption via C,
FE, and finally F’; this is the only minimal proof using C. However, putting E in
the matrix with o(x) = a makes it be subsumed by D.

Subsumption in the usual sense of smaller clauses representing any usage of larger
clauses fails. This failure occurs because we might lose the reason to connect a
clause to our current matrix. Keeping larger clauses instead also does not work,
as we might not be able to connect all literals of the larger clause. Nonetheless,
we can motivate additional symmetry avoidance this way. Define an arbitrary
total order < on input clauses such that start clauses are the least elements. We
assume that the order of each clause in the matrix is the same as the order of
the clauses in the input set from which they are a copy.

Lemma 1 (Instance Symmetry). Suppose there is a matriz proof M con-
taining o clause D with D = C, and that there is a p such that p(C) = o(D).
Then M with D exchanged for C also has a spanning set of connections.

Proof. As all variables in C and D are fresh, we can adapt o according to p.
This way, C' may be connected to the same literals as D. As p(C) has the same
literals as o (D), we neither add additional paths that must be closed, nor do we
prevent other clauses connecting to C' because we dropped the respective literal.

5 we do not apply an additional substitution to either side

14 Eisenhofer et al.

Corollary 2 (Instance Symmetry Completeness). Pruning models con-
taining such clauses D remains complete.

6.3 Substitution Symmetry

Symmetry appears in substitutions applied to different copies of the same clause.

Ezample 8. Consider a literal in two copies of the same clause, L{z] and Lly].
Assume that all attempts with o(xz) = a and o(y) = b fail. Nothing prevents
trying again with all connections “flipped” to the other clause and o(x) = b and
o(y) = a, introducing an exponential number of branches in the worst case.

We enforce an ordering on the substitutions applied to the variables in copies of
the same clause. This ordering of terms should be stable under substitution and
orient as many terms as possible, but need not have the subterm property and
therefore may not be a reduction ordering [3]. We suggest the following order.
Assume an arbitrary total ordering < over function symbols. Define f(#) < g(5)
iff 1) f < gor (ii) f = g and ¢ < 5. Sequences of terms ¢ < 5§ are compared
lexicographically. Let T be the variables occurring left-to-right in clause C. Given
two instances C* and C7 of the same clause with i < j, we may enforce that
o(Z;) % o(Z;) to avoid symmetries over clause substitutions.

Lemma 2 (Spanning Order). Suppose M has a spanning set of connections
and contains two copies C* and CI of the same clause. Then there is a spanning
set of connections that satisfies o(Z;) % o(Z;).

Proof. If this condition does not already hold, we have o(Z;) = o(Z;). Duplicate
clauses are already eliminated, so in fact o(Z;) > o(Z;). Now “swap” C* and
C’ by exchanging their connections to obtain a new spanning set of connections
and consistent substitution ¢’. Necessarily, o/(Z;) < 0/(Z;).

By iterated application of Lemma 2, it is possible to “reorder” any spanning set
of connections into another that respects the order.

Corollary 3 (Substitution Symmetry Completeness). Enforcing an or-
dering on substitution of variables in copies of the same clause remains complete.

7 Implementation and Experiments

Implementation. We implemented the encodings and optimisations of Sec-
tions 3-6 in our new prototype UPCoP®. UPCOP uses either the user-propagator
of the CADICAL SAT solver [30] or of the Z3 SMT solver [15].

Due to our encoding via SAT variables, UPCOP can choose an arbitrary
atom to be assigned in case of a decision. However, such an arbitrary atom

S at https://github.com/CEisenhofer/UPCoP

https://github.com/CEisenhofer/UPCoP

Finding Connections via Satisfiability Solving 15

Solver [UPCOPgy UPCOPgin] UP COPgpq] UPCOPgir] UP COPspq UPCOPgir] meanCoP
Enc. g]v[SU SH

Solved | 928 855 1,152 1,055 1,272 1,264 1,972
Unique| 27 20 109 93 105 76 551

Fig. 3: Experimental summary. UPC0OPgr and UPCoOPgyr denote the UPCoOP
versions based on CADICAL (SAT) and Z3(SMT). “Unique” lists the number
of problems solvable by UPCOP, but not meanCoP, and vice versa.

selection conflicts with the notion of goal-directedness. Consider, for example,
the initial constraint (6) that at least one selector of a conjecture clause has
to be taken. However, this constraint does not require that the solver start by
choosing one of those clauses, but only that one start clause is selected in the
final model. As a result, the solver might pick an arbitrary selector and derive a
submatrix from it that is not connectable to any conjecture. A similar situation
may occur when propagating all possible candidates in (7). We therefore force
UPCOP always to pick one of the currently relevant options, rather than leaving
the choice to the internal heuristics of UPCOP. Further, we make UPCOP to
assign currently irrelevant selectors false, rather than true.

We note that UPCOP might spend significant reasoning time upon term
equalities and orderings not required by any selected clause in the matrix. To
overcome this issue, UPCOP associates every non-ground term uniquely to the
clause copy it originates from. This way, we process (in)equalities reported by
those non-ground terms only in case the respective selector is assigned true.

Experimental Setup. We evaluated UPCOP on the TPTP benchmark set [57]
of first-order problems using an AMD EPYC 7502 clocked at roughly 1.8GHz, a
limit of 16GB memory per run, and a 30s timeout. We considered all 6468 prov-
able first-order problems of the TPTP 8.2.0 problem repository by translating
them upfront to the SMT-LIB input format [6].

We evaluated UPCOP with three encodings, as follows. First, we used the
encodings &y and &y of Sections 4-5, respectively. Further, we considered a
hybrid approach £g which combines £y and £y in a way such that the capacity
of every (non-ground) clause is increased on each failure, but the set of clauses
in the matrix is limited by the number of copies available, rather than by a
strict upper bound. For each encoding, we separately evaluated UPCoOP with
user-propagators of CADICAL and Z3. Our experimental results thus report on
six different settings of UPCOP, shown in Figure 3. In addition, we compared
UPCOP with the default (complete) mode of meanCoP [28].

Experimental Analysis. Our results are summarised in Figure 3, with all
versions of UPCOP solving altogether 1,601 problems. While UPCOP solves less
problems than meanCoP, we emphasize that UPCOP solves 179 problems from
all different kinds of categories that meanCoP cannot. There are many different
reasons for this. There are mainly two reasons apart from the “non-determinism”
in the choice of which literals to connect. The first one is that some matrix
proofs found by UPCOP are in fact decently smaller than the respective tableau-

16 Eisenhofer et al.

shaped proof of meanCoP. The second one is that the unsat core-based encodings
indeed sometimes deduce that certain clauses are completely irrelevant, and
consequently ignore them, resulting in a reasonable speed-up.

Counter-intuitively, UPCOP usually does not get stuck in eliminating non-
spanning connections. Most cases in which UPCOP does not terminate are be-
cause UPCOP is too slow to find a fully-connected matrix due to the previously
discussed points. As soon as a fully-connected matrix is found, it becomes span-
ning after only a few rejected matrices. Although the spanningness check is
co-NP complete, we did not encounter cases where it took a significant time.

We note that £y terminates quickly on inputs with small (potentially non-
tree-shaped) proofs. &y is best suited for large problems with redundant uncon-
nectable clauses, as we will not generate further copies of the redundant clauses.
€y best pays off on problems whose proofs use most clauses from the input, but
each of them only a few times.

Discussion. When analysing our experimental results, we note the following
aspects for further improvements in UPCOP:

— The SAT/SMT solvers used by UPCOP repeatedly learn additional facts
about the underlying proof systems, mostly using new Boolean variables.
Hence, the solvers might decide to split on these Boolean variables. This can
slow down proof search, as the solver might put a lot of effort into learning
facts about partial proofs that cannot be extended to a proper proof. Further,
some of these Boolean assignments represent partial proofs that a naive proof
enumeration cannot even reach.

— Learning clauses coming from those unfruitful proof spaces also do not nec-
essarily combine: for example, the solver can consider multiple submatrices
simultaneously, even though these submatrices can never be combined. The
assumption that conflict learning and SAT heuristics will guide the solver
towards a more focused search has not been vindicated. Postponing the
propagation of possible connections from submatrices not attached to the
main matrix helps to reduce the number of Boolean variables and the over-
head of propagating potentially unused constraints, but requires additional
expensive book-keeping.

— Adjusting the SAT/SMT solvers’ decision heuristic to prefer Boolean vari-
ables relevant for the current proof state might be beneficial [41]. Yet, such
adjustments harm efficient heuristics for variable selection within the solver.

— The encoding &7 suffers because the conflicts mainly learned depend on the
precise paths in the tableau. Similarly, conflicts learned about the Boolean
variables in the matrix encodings £y and &y do not generalise well from one
copy to the other in a way such that multiple copies of the same clause are
considered in an isomorphic way numerous times.

— Additionally, SAT/SMT solvers incur non-negligible overhead from propa-
gation loops for processing clauses. While simulating a single rule via SAT, a
naive proof enumeration solver can process multiple steps within that time.

As shown and discussed before, one way of tackling most of those problems
is to implement a custom variant of conflict learning that does not have the

Finding Connections via Satisfiability Solving 17

discussed behaviours that are mostly inherent to modern SAT solvers. Based
on these results, we build a further system hopCoP [49] that implements such a
custom conflict learning engine for the tableaux form of connection calculus.

8 Related Work

Most first-order theorem provers employ a variety of ground reasoning tech-
niques, predominantly SAT and SMT solvers. Here we must mention the family
of instance-based methods [8]: grounding a set of first-order clauses in the hope
that they become unsatisfiable, which can be employed with a dedicated cal-
culus [34] or alongside an existing system [50,53]. In the other direction, SMT
solvers often integrate quantifier instantiation into satisfiability routines [32,42].
Ground reasoning can also be used for many other combinatorial tasks in first-
order theorem provers [52], such as keeping track of clause splitting [59], detecting
subsumption [48], or determining if inferences are applicable [24]. MACE-style fi-
nite model builders [22] employ SAT solving to determine whether a set of clauses
is satisfiable, assuming a fixed-size finite model, using symmetry-breaking [51].

Apart from our other approach [49] using a custom conflict learning engine
and restricting ourselves to the direct encoding of proof objects, the ChewTPTP
system in both its SAT [26] and SMT [17] incarnations is the closest existing
approach to theorem proving via satisfiability solving. Chew TPTP encodes con-
straints for a closed connection tableau completely ahead of time, then passes
the resulting constraints to a SAT or SMT solver. The higher-order systems Sa-
tallax [29] and its fork Lash [19] also reduce proof search to the propositional
level. However, in contrast to UPCOP, when the Satallax’s SAT solver reports
unsatisfiability, a proof has been found. We previously published an early version
of our ideas in a more general setting [27].

9 Conclusion

We encode first-order connection calculi as a propositional problem, improve
our SAT encodings for matrix proofs, and guide iterative deepening using un-
sat cores. We introduce several optimisations to prune symmetries and elim-
inate unnecessary branches during proof search. Initial experiments with our
new UPCOP solver show that our encoding can be used to solve certain prob-
lems, other connection solvers fail to solve. Further improvements may come with
applying custom garbage-collection and variable selection heuristic strategies in
UPCOP due to the discussed problems encountered during solving.

Acknowledgements. This research was funded in whole or in part by the
ERC Consolidator Grant ARTIST 101002685, the ERC Proof of Concept Grant
LEARN 101213411, the TU Wien Doctoral College SecInt, the FWF SpyCoDe
Grant 10.55776/F85, the WWTF grant ForSmart 10.47379/ICT22007, and the
Amazon Research Award 2023 QuAT.

18

Eisenhofer et al.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

10.

11.

12.

13.

14.

15.

16.

Aloul, F.A., Sakallah, K.A., Markov, L.L.: Efficient symmetry breaking
for Boolean satisfiability. IEEE Trans. Computers 55(5), 549-558 (2006).
https://doi.org/10.1109/TC.2006.75

. Andrews, P.B.: On Connections and Higher-Order Logic. J. Autom. Reason.

5(3), 257-291 (1989). https://doi.org/10.1007/BF00248320, https://doi.org/10.
1007/BF00248320

Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge university press
(1998)

Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Handbook of
Automated Reasoning (in 2 volumes), pp. 273-333. Elsevier and MIT Press (2001).
https://doi.org/10.1016 /B978-044450813-3/50007-2

Bailleux, O., Boufkhad, Y.. Efficient CNF encoding of Boolean car-
dinality constraints. In: CP. LNCS, wvol. 2833, pp. 108-122 (2003).
https://doi.org/10.1007/978-3-540-45193-8_8

Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2016)

Barrett, C.W., Shikanian, I., Tinelli, C.: An abstract decision procedure for a
theory of inductive data types. J. Satisf. Boolean Model. Comput. 3(1-2), 21-46
(2007). https://doi.org/10.3233/SAT190028

Baumgartner, P., Thorstensen, E.: Instance based methods — A brief overview.
Kiinstliche Intell. 24(1), 35-42 (2010). https://doi.org/10.1007/S13218-010-0002-
X

Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844-852 (1983).
https://doi.org/10.1145/182.183

Bibel, W.: Automated theorem proving. Artificial intelligence, Vieweg, 2., rev. ed.
edn. (1987)

Bibel, W.: Comparison of proof methods. In: AReCCa. pp. 119-132 (2023), https:
//ceur-ws.org/Vol-3613/

Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCal, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Proc. of SAT
Competition 2020 — Solver and Benchmark Descriptions. pp. 51-53. Department
of Computer Science Report Series B, University of Helsinki (2020)

Biere, A., Froleyks, N., Wang, W.: CadiBack: Extracting Back-
bones with CaDiCaL. In: SAT. LIPIcs, vol. 271, pp. 3:1-3:12 (2023).
https://doi.org/10.4230/LIPICS.SAT.2023.3

Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability -
Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336. IOS
Press (2021). https://doi.org/10.3233/FAIA336

Bjorner, N.S., Eisenhofer, C., Kovéacs, L.: Satisfiability modulo custom
theories in Z3. In: VMCAIL LNCS, wvol. 13881, pp. 91-105 (2023).
https://doi.org/10.1007/978-3-031-24950-1_5

Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Artificial Intel-
ligence Today: Recent Trends and Developments, LNCS, vol. 1600, pp. 43—84.
Springer (1999). https://doi.org/10.1007/3-540-48317-9_3

https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1007/BF00248320
https://doi.org/10.1007/BF00248320
https://doi.org/10.1007/BF00248320
https://doi.org/10.1016/B978-044450813-3/50007-2
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.3233/SAT190028
https://doi.org/10.1007/S13218-010-0002-X
https://doi.org/10.1007/S13218-010-0002-X
https://doi.org/10.1145/182.183
https://ceur-ws.org/Vol-3613/
https://ceur-ws.org/Vol-3613/
https://doi.org/10.4230/LIPICS.SAT.2023.3
https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/3-540-48317-9_3

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Finding Connections via Satisfiability Solving 19

Bongio, J., Katrak, C., Lin, H., Lynch, C., McGregor, R.E.: Encoding
first order proofs in SMT. In: SMT. ENTCS, vol. 198, pp. 71-84 (2007).
https://doi.org/10.1016/J.ENTCS.2008.04.081

Brand, D.: Proving theorems with the modification method. SIAM J. Comput.
4(4), 412-430 (1975). https://doi.org/10.1137/0204036

Brown, C.E., Kaliszyk, C.: Lash 1.0 (system description). CoRR abs/2205.06640
(2022). https://doi.org/10.48550/ ARXIV.2205.06640

Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 24(3), 305-317 (2005).
https://doi.org/10.1109/TCAD.2004.842808

Cimatti, A., Griggio, A., Sebastiani, R.: Computing small unsatisfiable cores
in satisfiability modulo theories. J. Artif. Intell. Res. 40, 701-728 (2011).
https://doi.org/10.1613/JAIR.3196

Claessen, K., Sorensson, N.: New techniques that improve MACE-style finite
model finding. In: Proceedings of the CADE-19 Workshop: Model Computation-
Principles, Algorithms, Applications. pp. 11-27 (2003)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003).
https://doi.org/10.1145/876638.876643

Coutelier, R., Kovédcs, L., Rawson, M., Rath, J.: SAT-based subsump-
tion resolution. In: CADE. LNCS, vol. 14132, pp. 190-206 (2023).
https://doi.org/10.1007/978-3-031-38499-8_11

D’Agostino, M., Gabbay, D.M., Hiahnle, R., Posegga, J.: Handbook of tableau
methods. Springer Science & Business Media (2013)

Deshane, T., Hu, W., Jablonski, P., Lin, H., Lynch, C., McGregor, R.E.: Encod-
ing first order proofs in SAT. In: CADE. LNCS, vol. 4603, pp. 476-491 (2007).
https://doi.org/10.1007/978-3-540-73595-3_-35

Eisenhofer, C., Kovacs, L., Rawson, M.: Embedding the connection calculus in
satisfiability modulo theories. In: AReCCa. pp. 54-63 (2023), https://ceur-ws.org/
Vol-3613/

Farber, M.: A curiously effective backtracking strategy for connection tableaux.
In: AReCCa. pp. 23-40 (2023), https://ceur-ws.org/Vol-3613/

Farber, M., Brown, C.E.: Internal guidance for satallax. In: IJCAR. LNCS,
vol. 9706, pp. 349-361. Springer (2016). https://doi.org/10.1007/978-3-319-40229-
1.24

Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.:
IPASIR-UP: user propagators for CDCL. In: SAT. LIPIcs, vol. 271, pp. 8:1-8:13
(2023). https://doi.org/10.4230/LIPICS.SAT.2023.8

Galmiche, D.: Connection Methods in Linear Logic and Proof Nets
Construction. Theoretical Computer Science 232(1), 231-272 (2000).
https://doi.org/https://doi.org/10.1016 /S0304-3975(99)00176-0, https:
//www.sciencedirect.com/science/article/pii/S0304397599001760

Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in sat-
isfiabiliby modulo theories. In: CAV. LNCS, vol. 5643, pp. 306-320 (2009).
https://doi.org/10.1007/978-3-642-02658-4_25

Goubault, J.: The complexity of resource-bounded first-order classical logic. In:
STACS. pp. 59-70. LNCS (1994). https://doi.org/10.1007/3-540-57785-8_131
Korovin, K.: Inst-Gen - A modular approach to instantiation-based automated rea-
soning. In: Programming Logics - Essays in Memory of Harald Ganzinger. LNCS,
vol. 7797, pp. 239-270 (2013). https://doi.org/10.1007/978-3-642-37651-1_10

https://doi.org/10.1016/J.ENTCS.2008.04.081
https://doi.org/10.1137/0204036
https://doi.org/10.48550/ARXIV.2205.06640
https://doi.org/10.1109/TCAD.2004.842808
https://doi.org/10.1613/JAIR.3196
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-031-38499-8_11
https://doi.org/10.1007/978-3-540-73595-3_35
https://ceur-ws.org/Vol-3613/
https://ceur-ws.org/Vol-3613/
https://ceur-ws.org/Vol-3613/
https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/https://doi.org/10.1016/S0304-3975(99)00176-0
https://www.sciencedirect.com/science/article/pii/S0304397599001760
https://www.sciencedirect.com/science/article/pii/S0304397599001760
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/3-540-57785-8_131
https://doi.org/10.1007/978-3-642-37651-1_10

20

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Eisenhofer et al.

Kovécs, L., Voronkov, A.: First-order theorem proving and VAMPIRE. In: CAV. pp.
1-35. LNCS (2013). https://doi.org/10.1007/978-3-642-39799-8_1

Kreitz, C., Otten, J., Schmitt, S., Pientka, B.: Matrix-based constructive theo-
rem proving. In: Intellectics and Computational Logic (to Wolfgang Bibel on the
occasion of his 60th birthday). Applied Logic Series, vol. 19, pp. 189-205 (2000)
Letz, R.: Using matings for pruning connection tableaux. In: CADE. LNCS,
vol. 1421, pp. 381-396 (1998). https://doi.org/10.1007/BFB0054273

Letz, R., Schumann, J., Bayerl, S., Bibel, W.. SETHEO: A high-
performance theorem prover. J. Autom. Reason. 8(2), 183-212 (1992).
https://doi.org/10.1007/BF00244282

Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Handbook of Automated Reasoning (in 2 volumes), pp. 2015-2114. Elsevier and
MIT Press (2001). https://doi.org/10.1016 /B978-044450813-3/50030-8

Lynce, I., Marques-Silva, J.: On computing minimum unsatisfiable cores. In: SAT
(2004), http://www.satisfiability.org/SAT04 /programme/110.pdf

de Moura, L., Bjgrner, N.: Relevancy propagation. Technical Report MSR-TR-
2007-140, Microsoft Research, Tech. Rep. (2007)

de Moura, L.M., Bjgrner, N.S.: Efficient e-matching for SMT solvers. In: CADE.
LNCS, vol. 4603, pp. 183-198 (2007). https://doi.org/10.1007/978-3-540-73595-
3.13

de Moura, L.M., Bjgrner, N.S.: Z3: an efficient SMT solver. In: TACAS. LNCS,
vol. 4963, pp. 337-340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
324

Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning (in 2 volumes), pp. 371-443. Elsevier and MIT Press
(2001). https://doi.org/10.1016/B978-044450813-3 /50009-6

Otten, J.: leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: IJCAR. pp. 283-291.
LNCS (2008). https://doi.org/10.1007/978-3-540-71070-7_23

Otten, J.: Implementing connection calculi for first-order modal logics. In:
IWIL. EPiC Series in Computing, vol. 22, pp. 18-32. EasyChair (2012).
https://doi.org/10.29007/32M9

Ramakrishnan, I.V., Sekar, R., Voronkov, A.: Term Indexing. In: Handbook of
Automated Reasoning (in 2 volumes), pp. 1853-1964. Elsevier and MIT Press
(2001). https://doi.org/10.1016/b978-044450813-3/50028-x

Rath, J., Biere, A., Kovécs, L.: First-order subsumption via SAT solving. In: FM-
CAD. pp. 160-169 (2022). https://doi.org/10.34727/2022/ISBN.978-3-85448-053-
222

Rawson, M., Eisenhofer, C., Kovécs, L.: Constraint learning for non-confluent proof
search. In: TABLEAUX. LNCS (2025). https://doi.org/to-appear, appears in the
same TABLEAUX’25 inproceeding

Rawson, M., Reger, G.: Eliminating models during model elimination. In:
TABLEAUX. LNCS, vol. 12842, pp. 250-265 (2021). https://doi.org/10.1007/978-
3-030-86059-2_15

Reger, G., Riener, M., Suda, M.: Symmetry avoidance in MACE-style fi-
nite model finding. In: FroCoS. LNCS, wvol. 11715, pp. 3-21 (2019).
https://doi.org/10.1007/978-3-030-29007-8_1

Reger, G., Suda, M.: The uses of SAT solvers in VAMPIRE. In: Vampire. EPiC
Series in Computing, vol. 38, pp. 63—69 (2015). https://doi.org/10.29007/4W68
Schulz, S.: Light-weight integration of SAT solving into first-order reasoners — first
experiments. Vampire pp. 9-19 (2017)

https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/BFB0054273
https://doi.org/10.1007/BF00244282
https://doi.org/10.1016/B978-044450813-3/50030-8
http://www.satisfiability.org/SAT04/programme/110.pdf
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/B978-044450813-3/50009-6
https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.29007/82M9
https://doi.org/10.1016/b978-044450813-3/50028-x
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_22
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_22
https://doi.org/to-appear
https://doi.org/10.1007/978-3-030-86059-2_15
https://doi.org/10.1007/978-3-030-86059-2_15
https://doi.org/10.1007/978-3-030-29007-8_1
https://doi.org/10.29007/4W68

54.

53.

56.
57.

58.

59.

60.

Finding Connections via Satisfiability Solving 21

Schulz, S., Cruanes, S., Vukmirovic, P.: Faster, higher, stronger: E 2.3. In: CADE.
pp. 495-507. LNCS (2019). https://doi.org/10.1007/978-3-030-29436-6_29

Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
CP. LNCS, vol. 3709, pp. 827-831 (2005). https://doi.org/10.1007/11564751_73
Smullyan, R.M.: First-Order Logic. Springer (1968)

Sutcliffe, G.: The TPTP problem library and associated infrastructure. from CNF
to THO, TPTP v6.4.0. J. Autom. Reason. 59(4), 483-502 (2017)

Tinelli, C.: A DPLL-Based Calculus for Ground Satisfiability Modulo Theories. In:
JELIA. pp. 308-319 (2002). https://doi.org/10.1007/3-540-45757-7_26

Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: CAV.
LNCS, vol. 8559, pp. 696-710 (2014). https://doi.org/10.1007/978-3-319-08867-
9_46

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: CADE. LNCS, vol. 5663, pp. 140-145 (2009).
https://doi.org/10.1007/978-3-642-02959-2_10

https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/3-540-45757-7_26
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-642-02959-2_10

	Finding Connections via Satisfiability Solving

