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Introduction We investigate learning to identify useful lemmas for ATP, where usefulness is
defined in terms of 1) reducing proof search and 2) shortening the length of the overall proof.
How can ATP performance be improved by the generation and selection of useful lemmas?
In particular, we raise the question of what one can learn from a failed proof attempt. We
present a proposal about how to learn from failed proof attempts of a single problem. This is in
sharp contrast with previous works that rely on a large corpus of problems and aim to improve
performance based on success obtained with easier problems. By way of motivation, we argue
that human mathematicians learn from failed attempts as well.

Restriction to a class of problems with accessible and simple proof structures In-
terested in novel techniques, we work with a restricted class of first-order problems, condensed
detachment (CD) problems [9, 10, 7], due to Carew A. Meredith [5]. Inference steps can be
characterized by detachment (modus ponens) combined with unification. Proof structures are
particularly simple and accessible: full binary trees, or terms with a binary function symbol
D, which we call D-terms. Constants in these terms label axioms. As examples of D-terms
consider 1, a constant representing a use of the axiom labeled by 1; D(1, 1), representing a
detachment step applied to axiom 1 as major and minor premise; or D(1,D(1, 1)), representing
a proof with two detachment steps. These proof terms are closely related to proof structures of
the connection method [3, 4].

Proof search and data extraction We rely on the theorem prover SGCD [8] which performs
proof search by structure enumeration of binary trees (interwoven with formula unification),
until a suitable D-term is found. Enumeration can be axiom-driven, i.e. starting from axiom set
As, producing D-terms that represent complete proofs of unit lemmas. We can also enumerate
goal-driven, starting from conjecture C and obtaining partial proof trees of C. In practice
we interleave goal-driven and axiom-driven phases. Using the idea of Hindsight Experience
Replay [1], we can “pretend” that both sorts of failed proof attempts are in fact successful: In
the axiom-driven case, we change the goal conjecture to the one that was actually proven and
in the goal-driven case, we change the axioms to include whatever is needed to complete the
proof. Hence, we end up enumerating complete proof trees of “some” problems. We note that
the idea of Hindsight Experience Replay has already been applied to theorem proving in [2] in
the context of training a policy model to guide saturation-style forward reasoning.

Given a proof tree P ′ of some formula C ′ from axiom set As′, any connected subgraph S′

of P ′ can be considered as the proof of a lemma candidate L. If S′ is a full tree, it proves a
unit lemma, which is the formula associated with its root. Otherwise, it proves a Horn clause,
whose head is the root formula of S′ and whose body consists of the open leaves of S′. If we
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can measure how useful lemma L is for proving C ′ given axioms As′, this can serve as a useful
training signal for a guidance model. For the utility measure U , there are easy-to-compute
logical candidates, such as the compression in tree size, tree height, DAG size etc. A more
refined measure is obtained if we reprove C ′ with the lemma L added to the axioms As′ and
observe how the number of inference steps changes.1 This is slower to compute, but takes into
account the particularities of the prover, hence providing more focused guidance. In practice,
we find that the best performance is obtained by reproving and then normalising the inference
step reduction into [−1, 1], where −1 means that the problem could not be solved within the
original inference limit and 1 is assigned to the lemma that yields the greatest speedup. We
end up with tuples ⟨C ′, As′, L, U⟩ to learn from.

Interwoven proof search and training During the proof search of conjecture C from axiom
set As, we keep track of all produced proof trees P ′ and collect ⟨C ′, As′, L, U⟩ tuples, forming
a training dataset D. Once proof search is over, we fit a neural lemma selector to D. This
neural model M(conjecture, axioms, lemma) predicts the utility of the input lemma for proving
the conjecture from the axioms. Model M is next evaluated on all collected lemmas, along with
the original conjecture and axioms, i.e. we compute pairs

{⟨L,U⟩ | ⟨_,_, L,_⟩ ∈ D, U = M(C,As, L)}

Lemmas with the top k utilities are selected, where k is a hyperparameter to be tuned. The
selected lemmas are added to the problem as axioms2 and we can start proof search again.

Experiments We have performed experiments on training a unit lemma selector from suc-
cessful proof attempts, which is explained in [6]. A recent addition to this work is extracting
training data from failed attempts, for which we now present preliminary results.

In our first experiment, we fit separate models for each problem based on the prover’s failed
attempt on the given problem. The model is then used to select lemmas for a second round of
proof search. We use a set of 312 CD problems extracted or derived from the TPTP library
and allow a single strategy for SGCD (provecd_sgcd_s1) with 10 seconds per problem time
limit. As Table 1 shows, the base prover solves 176 problems, to which 11 problems are added
thanks to the added lemmas. This is 6% improvement.

Learn from Iter 0 Iter 1 Total
failure 176 187 187 (+11)

Table 1: Fitting a lemma selector model for each failed proof attempt

Next, we train a single model to guide lemma selection from all proof attempts on the entire
problem set. We compare three scenarios: 1) learning only from successful attempts, 2) learning
only from failed attempts and 3) learning from both success and from failure. Based on a set
of 411 CD problems, using SGCD with strategy provecd_sgcd_s1 and 10 s time limit, Table 2
shows that learning brings significantly more improvement when learning from failure (15%),
compared to learning from success (12%). It is important to emphasize that this is not because
the training signal from failed attempts would be more valuable, but rather because there is
much more data that can be extracted from failure than from success.

1Number of inference steps refers to the underlying Prolog engine, not a calculus. It provides a measure
similar to the time required for proving, but independent from hardware or system load fluctuations.

2If the prover has some special mechanism for handling lemmas, they need not be treated as axioms.
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Learn from Iteration Total
0 1 2 3 4

success 199 203 206 216 205 222 (+23)
failure 199 211 219 209 205 229 (+30)
both 199 212 207 223 200 230 (+31)

Table 2: Fitting a single lemma selector model for the entire training set. Single strategy mode.

In our last experiment, we use a portfolio of 9 SGCD strategies instead of a single one.
Table 3 shows that the base prover is stronger and the improvement due to learning is somewhat
less (11% vs 15%), but it still remains significant.

Learn from Iteration Total
0 1 2 3 4

both 236 257 246 249 244 263 (+27)

Table 3: Fitting a single lemma selector model for the entire training set. Portfolio mode.

Conclusion Our work has two key takeaway messages. First, identifying useful lemmas can
greatly aid automated proof search. Second, our preliminary results suggest that a lot of useful
training signal can be extracted from failed proof attempts. This latter is in sharp contrast
with most existing learning assisted provers (and in fact with most reinforcement learning
algorithms), which focus on learning from successful attempts. We hope that future work will
uncover the full potential of these observations.
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