Project Proposal: Forward Reasoning in Hindsight

Michael Rawson!, Zsolt Zombori®?,
Maximilian Doré*, and Christoph Wernhard?®

! TU Wien, Austria michael@rawsons.uk
2 Alfréd Rényi Institute of Mathematics, Hungary zombori@renyi.hu
3 E6tvos Lorand University, Budapest, Hungary
4 University of Oxford, United Kingdom maximilian.dore@cs.ox.ac.uk
® University of Potsdam, Germany info@christophwernhard.com

Abstract

Hindsight Experience Replay is a promising technique in reinforcement learning. How-
ever, we argue that its interpretation in refutational theorem proving is somewhat indirect,
and instead propose its application in reasoning settings where consequences are derived
from axioms alone until a goal is reached. Such settings include many sequent-like cal-
culi, condensed detachment, non-trivial fragments of dependently-typed languages such as
Agda, and we conjecture that unit equational reasoning is also suitable.

1 Hindsight Experience Replay and Reasoning

Applied to automated theorem proving, Hindsight Experience Replay (HER) [1] could be sum-
marised as follows. Suppose a goal G should be reached from some premises P via some calculus
that generates consequences C of P. A model M(C | G,6) is employed as a heuristic for the
enumeration of consequences based on the goal and learned parameters 6. If a proof is not
found within some resource limit, training data can be obtained by taking some derived conse-
quence C , pretending in hindsight that this was the desired goal, and inspecting its derivation.
Positive examples are then those other consequences used in the derivation of C, and negative
examples those that are not in the derivation of C'. These are then used to update 6.

This procedure yields labelled tuples (C,C’,l>, where [is a Boolean label. These tuples
represent a kind of selection problem: is C' useful for deriving C? Implicit in this régime is that
the model is capable of generalising, such that training on the proxy (C,C, k) task yields an
improvement on the real task (C,G,?). This deviates from the norm in machine-learning-for-
theorem-proving: conventionally, a set of goal-premises pairs (“problems”) are given such that
an untrained system can solve some, but not all, of the problems. It is assumed that training
on data obtained from the solved pairs helps the trained system to solve the unsolved pairs.
A MaLARea-style loop [12] is often used. By contrast, HER does not need to solve a single
problem, and can even be trained on only one problem in principle. It is not clear whether it
is necessary or even desirable to have a set of solved pairs in the training set.

The seminal work of Aygiin et al. [2] shows great promise applying HER to automated
theorem proving. Aygiin et al. employ a refutational calculus, so the “true goal” G is always
1, a problem which is ingeniously worked around: the original goal is taken to be the input
clause set S, including the negated conjecture, and when some clause D is derived it can be
used as training data in hindsight for the goal S, —~D. The first author believes that even more
could be achieved with HER-style learning in theorem proving with a non-refutational calculus,
where the notion of true and hindsight goals are perhaps more natural.

Forward Reasoning in Hindsight Rawson, Zombori, Wernhard, Doré

2 Proposal

We therefore propose employing HER with a non-refutational, forward-chaining calculus. Proofs
in such calculi proceed from premises only, deriving new conclusions until the goal (or some
generalisation thereof) is reached. The goal, or its negation, is not involved in search, and is
only used in our proposed setup as a parameter to M. This does unfortunately rule out popular
calculi such as superposition. However, our project could profitably include:

Condensed Detachment. Carew Meredith’s condensed detachment (in essence modus po-
nens with unification) provides an ideal setting for us, in which there are also hard prob-
lems of interest [14]. LCLO73-1 in the TPTP library [11] is particularly hard for automatic
systems, with a fully-automatic proof obtained only recently [10]. It is both complete and
efficient to apply the condensed detachment rule only, and the goal is considered proved
when a consequence is derived that subsumes it. Despite its simplicity, condensed de-
tachment, extended with a second proof constructor for quantification, is sufficient as sole
basis [6] for the formalisation of mathematics with Metamath [7].

Dependent Type Theory, Proof Schemas and Combinators. In dependently-typed in-
teractive theorem provers such as Agda [8], a goal type is dispatched by constructing a
term of that type. Many terms can be constructed using only function application (s t),
where s and ¢ are themselves applications or names of previous constructions. Proof search
hence typically proceeds by (partially) applying functions and type-checking the refined
proof goals. By also using explicit elimination principles for inductive types (defined
uniformly), it is moreover possible to carry out proofs by induction using only function
applications. Agda therefore fits very naturally in our approach of deriving consequences
from already known results, and its type-checker quickly computes the ostensible proof
goal. We are also struck by the similarity to compressed combinatory proof structures,
implemented (so far only for backwards search) within the CCS prover [13].

Unit Equational Reasoning. We avoid the term rewriting as what we propose does not fit
into the usual mould of rewrite systems [3], but the problem is the same: given a set
of universally-quantified equations, determine whether a goal s = t is implied by the
set. This is usually done by negating the goal and rewriting it, possibly overlapping
equations along the way. In order to fit this into our setting it seems almost sufficient
to only overlap equations (without employing term orderings) until the goal is reached.
However, checking that the goal has been reached is not straightforward — consider that
we have derived a = b and ¢ = d but the goal is f(a,c) = f(b,d) — but perhaps a
congruence rule or some generalised notion of reaching the goal fixes this problem. We
would be especially pleased to hear from the AITP community about this. Note that
some condensed detachment problems in the TPTP concern axiomatisations of equality,
and wvice versa some unit-equational problems encode condensed detachment.

Sequent Calculi. Many sequent-like calculi fit naturally. However, we suspect this is rarely
useful, as such calculi are not designed for automated deduction and are rarely efficient
without substantial modification.

Other. We would be delighted to hear about other calculi that we have not encountered but
that fit into this setting, or ideas about how to adapt existing refutational calculi such as
superposition or resolution. These calculi have already been used for finding consequences
of axioms [5], with applications to software verification [4].

Forward Reasoning in Hindsight Rawson, Zombori, Wernhard, Doré

3 Initial Results

Previous work by some of the authors [9, 10] employed a hindsight mechanism for selecting useful
lemmas in the context of condensed detachment. Here we wish to push this idea further, and
to include other proof calculi. A prototype system using HER to guide condensed detachment
search has been developed by the first author'. The system hard-codes the challenge problem
LCLO73-1 and then applies saturation-style search with the condensed detachment rule, starting
from the single axiom and limited to 100 activations. Condensed detachment has a habit of
producing exponentially large terms if unsupervised, so for the prototype a limit on the term
size is enforced. After 100 activations, the search space is sampled to produce positive and
negative training data for a sampled hindsight goal. These data are used periodically to train
a neural network, which selects the next activated consequence in e-greedy fashion.

Fixing a single hard problem has several advantages, as well as the significant reduction in
system complexity. One is that we can test the hypothesis that training on a single problem
is sufficient. Another is that we can monitor the progress of the system by recording which
intermediate results in a known proof are derived in a particular saturation run. This is a
stochastic measure by design due to the e-greedy policy, and somewhat flawed in that alternative
proofs are not recognised. However, the system rapidly and clearly improves over a random
baseline, and the current record run derived 21 results from the reference 46-step proof?.

4 Outlook

From this prototype we conclude that our approach shows promise, but has room for improve-
ment both in terms of proving power (the other half of LCL0O73-1 remains to be shown!) and
reusability. We intend several future directions. Manual inspection of the system’s behaviour
may reveal some deficiencies that prevent it progressing further, although we suspect that the
challenge problem is simply very hard and finding a 46-step proof in 100 activations requires
very precise selection. A greater degree of compute (currently the first author’s trusty desk-
top) and a different experimental setup including easier problems may prove profitable for this
reason. We also intend to begin investigations outside of condensed detachment. Recent work
has shown that applicative terms may be a viable route to the integration of Agda, when com-
bined with explicit induction schemes, hand-selected functions such as dependently-typed SKI
combinators, and Agda’s support for type inference and implicit arguments.

References

[1] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5048-5058, 2017.

[2] Eser Aygiin, Ankit Anand, Laurent Orseau, Xavier Glorot, Stephen Marcus McAleer, Vlad Firoiu,
Lei M. Zhang, Doina Precup, and Shibl Mourad. Proving theorems using incremental learning and
hindsight experience replay. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022,

Thttps://github.com/MichaelRawson/hercd
2Note that the reference proof is used only for monitoring. Care is taken to ensure it does not affect training.

https://github.com/MichaelRawson/hercd

Forward Reasoning in Hindsight Rawson, Zombori, Wernhard, Doré

(6]

(7]

(9]

[10]

(1]

[12]

[13]

[14]

17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pages 1198-1210. PMLR, 2022.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

Laura Kovédcs and Andrei Voronkov. Finding loop invariants for programs over arrays using
a theorem prover. In Marsha Chechik and Martin Wirsing, editors, Fundamental Approaches
to Software Engineering, 12th International Conference, FASE 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-
29, 2009. Proceedings, volume 5503 of Lecture Notes in Computer Science, pages 470-485. Springer,
2009.

Richard Char-Tung Lee. A completeness theorem and computer program for finding theorems
derivable from given axioms. PhD thesis, University of California, Berkeley, CA, 1967.

Norman D. Megill. A finitely axiomatized formalization of predicate calculus with equality.
36(3):435-453, 1995.

Norman D. Megill. Metamath. In Freek Wiedijk, editor, The Seventeen Provers of the World,
Foreword by Dana S. Scott, volume 3600 of Lecture Notes in Computer Science, pages 88-95.
Springer, 2006.

Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in Lan-
guages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1-2. ACM,
2009.

Michael Rawson, Christoph Wernhard, and Zsolt Zombori. Learning to identify useful lemmas
from failure (extended abstract). In Michael R. Douglas, Thomas C. Hales, Cezary Kaliszyk,
Stephan Schulz, and Josef Urban, editors, AITP 2023 (Informal Book of Abstracts), 2023.

Michael Rawson, Christoph Wernhard, Zsolt Zombori, and Wolfgang Bibel. Lemmas: Generation,
selection, application. In Revantha Ramanayake and Josef Urban, editors, Automated Reasoning
with Analytic Tableauz and Related Methods — 32nd International Conference, TABLEAUX 2023,
Prague, Czech Republic, September 18-21, 2023, Proceedings, volume 14278 of Lecture Notes in
Computer Science, pages 153-174. Springer, 2023.

Geoff Sutcliffe. The TPTP problem library and associated infrastructure — from CNF to THO,
TPTP v6.4.0. J. Autom. Reason., 59(4):483-502, 2017.

Josef Urban, Geoff Sutcliffe, Petr Pudldk, and Jif{ Vyskocil. MaLARea SG1 — machine learner for
automated reasoning with semantic guidance. In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, Automated Reasoning, 4th International Joint Conference, IJCAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer
Science, pages 441-456. Springer, 2008.

Christoph Wernhard. Generating compressed combinatory proof structures — an approach to
automated first-order theorem proving. In Boris Konev, Claudia Schon, and Alexander Steen,
editors, PAAR 2022, volume 3201. CEUR-WS.org, 2022. https://arxiv.org/abs/2209.12592.
Christoph Wernhard and Wolfgang Bibel. Learning from Lukasiewicz and Meredith: Investigations
into proof structures. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE
28 - 28th International Conference on Automated Deduction, Virtual Fvent, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 58—75. Springer, 2021.

https://arxiv.org/abs/2209.12592

	Hindsight Experience Replay and Reasoning
	Proposal
	Initial Results
	Outlook

