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Abstract

Evaluating automatic theorem provers is a non-trivial, subtle endeavour. There are
a number of conflicting issues to consider, be they computational, statistical, economic,
or — most difficult of all — social. We present a review of such challenges, seen from
the perspective of, and with application to, the first-order system Vampire. We further
highlight the exemplary achievements of existing thought and practical tools, and sketch
some future directions for work in this area. We are not the first to consider this issue, and
do not claim to offer the final word, but strongly believe that this is a topic that requires
significant and sustained attention from our community.

1 Introduction

Automated theorem provers (ATPs) ingest an input problem consisting of axioms and a con-
jecture expressed in a certain logic, and attempt to determine if the conjecture is a consequence
of the axioms in said logic. Some systems can also detect when this is not the case. Evidence,
varying in quality but often in the form of a step-by-step proof, may be output from the system.

It is not straightforward to objectively evaluate ATPs. To begin with, it is not clear which
input problems are in some way worthwhile and worth solving, and which are logical detritus to
be ignored. Various enumerations of “all possible problems” exist, but here again it is difficult
to know which enumeration is most interesting. In practice, ATPs are evaluated with respect
to an existing fixed set of problems, often from industrial or mathematical settings. Problem
libraries such as Thousands of Problems for Theorem Provers (TPTP) [32] combine several
sources of problems into a unified format.

Most users and developers of ATPs agree that more problems solved, faster, is a good
objective. For example, it is uncontroversial to say that an ATP using a given algorithm is
worse than an ATP miraculously engineered to execute an identical algorithm twice as quickly.
ATP users and developers are also impatient, so evaluations are phrased in terms of number
of problems solved within a time limit, usually per-problem. Unfortunately, “solving more
problems” and “solving problems faster” are usually, but not always, correlated. To further
muddy the waters, modern systems are normally deployed as part of a portfolio, a collection
of different systems or system configurations (“strategies”) all attempting the same problem,
either sequentially or with some amount of parallelism. The idea behind the portfolio approach
is that it is better on average to give up a doomed strategy after a short time and try again with
a different approach, than it is to continue failing to solve the problem with one long strategy
run. In this setting the overall performance of a strategy is less important than its contribution
to overall portfolio performance.

In the following we discuss typical approaches taken by ourselves and others in the commu-
nity (§2), some desirable outcomes and problems encountered in their pursuit (§3), and propose
some possible solutions (§4) for discussion at ARCADE. We also present some exemplary think-
ing and useful tools (§5) contributed by others around this area.
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2 Typical Approaches

Almost all practical research into ATP systems features some amount of quantitative system
evaluation, “experiments”. Possible exceptions might include systems that are the only im-
plementation of reasoning in a certain logic or fragment [35], generic over many logics [37], or
designed for an entirely new application [7], although even these may still opt for quantitative
evaluation. Experiments provide implicit motivation for the great majority of the ATP research
ecosystem, but arguably fall far short of the epistemic standards required of other fields, likely
due to the staggering number of variables involved and collective acceptance of a trade-off that
often sees robustness traded for ease of evaluation.

In simple terms, the typical approach is to select a set of problems, run ATPs over each of
these problems, and count how many problems each ATP solved. We expand on this method-
ology below and describe some common variations.

2.1 Problem Libraries

Experiments most often use some kind of common library of problems, rather than an enu-
meration of all possible problems in a given class: this choice is usually motivated (if at all)
as emphasising ATP performance on “problems of interest”, as opposed to “synthetic” prob-
lems dismissed as uninteresting1. Problem libraries exist on a spectrum of generality, from a
relatively-small number of problems extracted from some concrete application [4], to large bod-
ies of problems extracted from a single source library of mathematics [38], to large heterogeneous
problem sets2 such as TPTP [32] and SMT-LIB [3] that are often used for competitions [33, 2].
Libraries vary in the amount of metadata available to ATPs, sometimes necessitating complex
heuristics to recover information [24].

Although undoubtedly an exemplary achievement, an absurdly-effective driver of research
(what is more annoying than an easily-available set of problems that you cannot solve?), and
overall a great boon for ATP progress, problem libraries are not perfectly suited for experiments.
Evaluation of systems is not problem libraries’ only purpose or virtue, so they will likely never
be ideal for this task, but nevertheless we highlight possible evaluation problems.

Large numbers of so-called “trivial” problems (solved very quickly by most systems) in
problem libraries can skew results, a recurring theme in the SMT-LIB world [8, 22, 42] but also
present elsewhere. Such problems are often denigrated, but serve many useful purposes, from
simple historical value to testing new systems to exposing weaknesses in established strong
systems. We would happily argue that these problems should be retained in libraries and
evaluation methods adapted to accommodate their presence.

Diversity of problems (and problem tasks/types, e.g. comparing satisfiable and unsatisfiable
SMT instances [22]) is another issue [12], but here it’s not even clear what a desirable direction
is. Very diverse problem sets emphasize strong general-purpose techniques at the expense of
specialised reasoning techniques, but very specific sets achieve the opposite, and furthermore
penalise systems with the wrong specialisation. It may be interesting to note that for many
years SMT-COMP [42] used a division per logic, aiming to celebrate success within a single
SMT-LIB logic3 at the expense of a large number of divisions, but in 2021 the organisers have
decided to start combining logics — divisions become more general, at the risk of failing to
reward solvers specialising in a particular logic.

1not necessarily easy: even small constructed problems give modern systems trouble [19, 43]
2although these often have substructure, such as the domains in TPTP, or the problem families in SMT-LIB
3a combination of pre-defined theories such as linear integer arithmetic or uninterpreted functions
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2.2 Running Systems

Even invoking a single ATP/problem pair in a reproducible fashion is not straightforward.
Powerful heuristics such as Vampire’s limited resource strategy [27] can dramatically change
behaviour on repeated runs, and even supposedly-deterministic system configurations can be
sensitive to the environment in which they run: hard disk, CPU, operating system state, etc.
Small experiments may be more conveniently run on researchers’ own desktop machines, which
certainly have many sources of experimental “noise”, such as other programs also demanding
machine resources. Larger experiments are usually run on resources such as StarExec [31],
which may reduce but does not completely remove this noise [8], although personal experience
indicates such systems can introduce other issues such as scheduling non-determinism.

Choice of resource limits (most pertinently wall-clock time) is another interesting exper-
imental parameter usually chosen arbitrarily: it is perfectly possible for different systems or
configurations to be strong at different time limits, and time limits themselves range from a
few seconds to as long as necessary for research mathematics [17], although it has often been
noted that the majority of problems are solved within the first few seconds. Empirically, there
is a “Peter Principle Point” where linear increase in resources makes little difference [36]. Both
CASC and SMT-COMP have had an array of different wall-clock times. In 2019 SMT-COMP
had an industrial challenge track with a 12 hour time limit per problem. In the same year
SMT-COMP also introduced 24-second4 cross-division award. Similarly, in 2017 CASC ran a
new track using a 30 second time limit, much shorter than its normal 5 minutes. This reflects
varied use cases: in hardware verification long time limits (12 hours) are not unheard of, whilst
software verification tools and proof assistants often employ very short time limits.

2.3 Comparison Methods

Experiments often seek to determine the behaviour of some technique with respect to a baseline,
or similarly several different techniques (or parameter values, “options” henceforth) with respect
to each other. This may be influenced by the question being asked e.g. the subtle difference
between “which of these options should I keep in my solver” and “which of these options should
be the default value”.

The simplest approach is to run both the baseline and the new options identically and
compare results — this remains valid and is used in some contexts — but is complicated by
the presence of portfolio modes and systems with many existing options, such as Vampire. It
may well happen that some new option is very useful in combination with some other system
options, but not with others. Equally, in the presence of a large (and increasing) number
of existing options, a full evaluation with all combinations of options is not computationally
feasible. Vampire’s developers already investigated this particular aspect of evaluation [25],
discussing the following four methods:

“The cube” Fix a baseline ATP configuration (or at least aggressively subsample the existing
option and problem space), then try all combinations of the new options under test.

“Randomly sample the super-cube” Randomly and repeatedly selecting ATP configura-
tions and problems with new options can give some impressions about how useful the new
options are, and which existing options they combine well with. However, it is not clear
how to interpret the results, or how best to choose resource limits.

4Anecdotally (the second author was part of the conversation) this time limit came from an industrial use
of SMT solvers that we were aware of.
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“Compare with the Past” Run a portfolio previously used in competition with the new
options. Relatively cheap, and if results are improved this is a clear victory. If not (and
this is quite likely, given how portfolios are constructed) then this is not so clear.

“Building different Futures” Not tried in the investigation, but building a new portfolio
with the same method used to construct past portfolios allows comparing portfolio per-
formance with and without new options. We return to this idea later, but it appears very
promising as an evaluation method.

On the other hand, we note that it is often the case that the developers of some systems (the
main system that comes to mind here is CVC4) tend to focus on a small number of new,
orthogonal options. As a result, evaluation is simplified somewhat, and experiments are usually
relatively straightforward, comparing the solver with new options against other ATPs, e.g.
[26]. This leaves developers free to select or generate appropriate benchmarks. In a different
world altogether, SAT solvers tend to have very few (if any) system options, and the benefit
of a decidable setting. This leads to some interesting evaluation methods [21] that the ATP
community could learn from.

2.4 Summary Statistics

Once an experiment has finished, most publications contain some summary information to
indicate the success5 of the techniques described. Sometimes, a technique simply produces a
much greater total number of solved problems, which is hard to argue with. If not, a researcher
can hope that the modified system can prove something that nothing else can (“uniques”),
which is made somewhat easier if few other runs are made. The argument made here —
often using the word “complementary” — is that the feature can be gainfully included into a
hypothetical future portfolio, although this is rarely actually carried out to support the claim
in the publication. Even more summaries may be computed, particularly in competition:

Virtual Best Solver, a comparison against the hypothetical solver that chose the best ap-
proach between different systems, such as in [42, 16]. In SMT-COMP this is used to give
the Largest Contribution ranking, which can be thought of as measuring the regret of not
having a particular solver available.

SOTAC, State Of The Art Contribution, is mostly used in the TPTP/CASC world [34].
SOTAC for a problem/system pair is 1− f , where f is the fraction of systems that solved
that problem, and SOTAC for a system as a whole is the mean SOTAC for problems it
solved, excluding problems solved by all systems6.

u-score “accumulates for each problem solved by a strategy the reciprocal of the number of
strategies which solve that problem” [13]. Here u stands for uniquely solved and this is
meant to be a measure of how unique the solution is e.g. it is 1 if a single strategy solves
the problem.

Biggest Lead, rewards the solver that won by the most (introduced to SMT-COMP in 2019).
Motivated by the observation that many “wins” are quite close, this comparison aims to
identify the solver that creates the largest gap between itself and the closest runner-up.

5failure is in principle possible but rarely seen, mediocrity rephrased as qualified success
6recently updated slightly after discussion with the community noted that considering problems solved by

all systems is not useful, see http://www.tptp.org/CASC/J10/Proceedings.pdf
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3 Undesired Problems and Problematic Desires

As mentioned in the abstract, the issue of evaluation is not a new issue and continues to be
the subject of much discussion, but it shouldn’t be. We would rather not have to think too
hard about ATP evaluation and would rather be spending this time developing new and ex-
citing theorem provers. Therefore, to help ourselves and similar researchers, we’d like to sort
the matter out once and for all. Below, in no particular order, we enumerate some problems
encountered when evaluating ATPs and indulge in some wishful thinking about the character-
istics enjoyed by the future evaluation section of our dreams. We suggest directions towards
this future evaluation approach in the next section but don’t claim to have the answer yet.

Simplicity. The typical approach has the benefit of total simplicity. It is easy to re-implement,
quite tolerant of systematic error, and easy to review. Any replacement must be (almost)
as simple so as to retain these characteristics and gain acceptance in the community. We
must remember that “worse is better” [10]: flawed-yet-simple systems have better survival
characteristics than complex, fully-correct systems. Simple methods are also likely to be
fun and easy to use, characteristics that endear them to researchers and foster adoption.

Rapid approximate evaluation. In a similar vein, researchers would like to rapidly evaluate
ATPs during development [18] but are discouraged from doing so by the time it requires.
While full competition-style evaluation is likely to remain computationally-expensive, a
fast approximation may suffice for development.

Energy consumption. ATP evaluation consumes considerable electricity, which presently
comes at environmental cost. Researchers have an obligation to at least consider whether
their work could continue with a reduced energy budget.

Incentives. Not everyone agrees on what the field of ATP development as a whole should aim
towards [23]. Whatever you think, presumably one’s chosen evaluation methods should
incentivise progress towards one’s research goals.

Dissemination of ideas. It is difficult at present to publish an idea without spending a sig-
nificant amount of effort and CPU time evaluating it. The existence of highly-developed
systems such as Vampire also make it difficult to justify early fundamental work, such
as entirely-new approaches to reasoning.

The scrapheap. Some ideas are never investigated or published due to disappointing results.
Some good directions that “do not turn out to be practically useful” may simply require
a different experimental setting (benchmarks, time limit, etc.) to shine7. We remark here
that even the totally useless can be beautiful or interesting!

Alternative progress. While it is probably too much to hope for to expect ATP researchers to
submit, review and publish bona fide negative results, it would be interesting if evaluation
methods could detect when one technique is subsumed by others, which also encourages
a reduction in the size of ATP systems. Current methods do not typically achieve this.

Scalar evaluations. Other fields have the luxury of widely-used numerical measures of suc-
cess, such as the GLUE benchmark [41] from natural language processing. In principle
this is also possible for ATP systems, but no single measure is used comparatively in the
same way.

7This is not a new problem, merely an old one reappearing in a new guise! One reported motivation for the
creation of TPTP was observing good ideas abandoned due to poor results on very small problem sets.
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Reproducible runs. Results differ from machine to machine, and even from run to run, even
if they “should not”. This is undesirable.

Magic numbers. Systems often implement parameterised algorithms. Manual tuning of these
parameters to obtain fixed “magic numbers” that work well on certain problem sets is
fragile and not especially interesting from a research standpoint, so evaluation methods
should encourage exposing these as user options.

Aesthetics and Occam’s Razor. Given two systems that are equally powerful but differing
in complexity, clarity or aesthetics, most researchers have an innate sense that the simpler,
clearer, more beautiful system is preferable. This is by no means a well-defined criterion,
but nonetheless it is something to consider.

Reduction of experimental parameters. There is an abundance of experimental parame-
ters that must be chosen, such as the benchmark set chosen and the time limit. This makes
it impossible to compare systems directly8 from literature and less likely that researchers
coincide on their choices.

Unclear conclusions. A typical experiment only offers a very specific conclusion such as
“Vampire’s current portfolio mode can be augmented with feature F to prove X more
problems while only losing Y problems on the supported fragment of a certain version of
TPTP, in the context of a certain amount of time and memory on a certain machine”.
We would surely like to conclude something a little more concrete.

Community stimulus. We are reliably informed that competitions are designed to provide
both evaluation and stimulation, in order that hard work and good systems are rewarded,
but also to provide inspiration and discussion for others. We consider this one of the best
aspects of the current approach, and one that must be retained regardless of evaluation.

4 Some Suggestions

Here we suggest some ideas that may help with the above. They may well be controversial,
ill-considered, already done elsewhere, or simply not work, but we hope to hear about this in
discussion at ARCADE!

Reproduction by emulation. Emulation software such as DOSBox9 provide software imple-
mentations of instructions and peripheral responses for an emulated machine. Given this,
it may be possible to emulate ATP runs such that sources of non-determinism such as
CPU cache or disk access are eliminated, regardless of the host machine. We are not yet
sure of the practical or performance implications of such a contraption.

Case study problems. Given the limitations of the typical approach (particularly with re-
spect to portfolio modes), one way forward might be a community shift to demonstrating
practicality by highlighting specific “case study” examples that can be solved (faster)
using a new technique [23], leaving overall performance for competitions. This is easily-
understood, traditional, and arguably more convincing than a large table of quantities
such as the u-score. It also motivates the creation of difficult problems.

8For example, competitions often changing their time limits and benchmark selection approach between
years can complicate comparison.

9https://www.dosbox.com/
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Statistical estimation. By treating the evaluation problem not as an enormous space, but
as a source of random configuration/problem samples, some insight may be gained. One
could imagine conclusions such as “with 95% confidence, enabling feature F solves prob-
lems X% faster” (c.f. [11]). This also allows for incremental approximate evaluation.

Single-mode systems. A very simple way around the problem of evaluating portfolio modes is
to forbid them! This is not a new idea: recent iterations of the SAT and SMT competitions
explicitly rule out some kinds of portfolio system10. This encourages development of
strong single-mode systems that may be later combined in separate portfolio systems.

The “Glucose hack” track. The SAT competition includes a division where entries must
be minor modifications to the Glucose SAT solver [1]. The lack of similar competitions
for e.g. first-order systems suggests we could copy the idea to some extent, although the
diversity of first-order systems and calculi suggests we would need at least an “E hack”,
“iProver hack” and “leanCoP hack”! Perhaps the new PyRes teaching system [29] will
offer a level playing field for saturation-based systems11.

Evaluation by fast portfolio creation. As mentioned above, a possible solution to evaluate
portfolios is to create a fresh portfolio with access to a new option, then compare the fresh
portfolio to a baseline portfolio created without access. If done consistently, this provides
convincing evidence that the new feature improves overall performance in the presence
of portfolios. If general-purpose algorithm configuration tools and techniques (see later)
prove sufficiently powerful and flexible, a standard technique could be prescribed to allow
comparison. This could also allow competitions on unseen problems with automatically-
tuned portfolios, removing this aspect from competition.

5 Good Thinking and Useful Tools

We consider some tools and techniques we think may be useful for future evaluation techniques.
The problem of running system/problem pairs in a reproducible fashion does not seem too

difficult when compared to the other problems of evaluation. We note here excellent software
such as StarExec [31] and the runsolver tool [28], but with emulation/monitoring tools such
as perf [9], QEMU [5] and Valgrind [20] it may be possible to go further.

An effort is already underway to apply the SMAC [15] algorithm configuration tool to
Vampire, perhaps improving on the existing script we use for this purpose. We will consider
whether this technique can also be used for evaluating portfolio ATPs: there is existing work
on ablation analysis [6] for similar domains that may prove interesting. We are also interested
in work applying SMAC and other techniques to iProver [14]. Strategy-invention tools such
as BliStr [39] and extremely-general techniques such as Bayesian optimisation (already widely-
used for parameter optimisation with extremely expensive samples in machine learning [30])
may also prove useful in this endeavour.

The SAT and SMT communities continues to provide inspiration. Work by Nikolić [21]
seems very promising for a statistical/sampling approach to evaluation. The Sparkle system [40]
already aims to solve at least some of our problems in a SAT context.

10The difficultly comes in defining a portfolio system. Vampire may run 100s of complementary strategies
using a range of different calculi, which may be more diverse then combining two different solvers.

11There is a tutorial at CADE in 2021 that encourages participants to hack PyRes and submit the result to
CASC.
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