
Embedding the Connection Calculus
in Satisfiability Modulo Theories
Clemens Eisenhofer*, Laura Kovács and Michael Rawson

TU Wien, Austria

Abstract
We investigate embedding a broad class of deduction systems in satisfiability solvers such as Z3. One
such deduction system is the connection calculus. Using Z3’s support for user propagation, proofs in
a user-specified calculus can be found automatically via Z3’s internal satisfiability procedures. The
approach places few constraints on the deduction system, yet allows for domain-specific optimisations if
known. We discuss ramifications for proof search in the connection calculus.

Keywords
Connection Calculus, Sequent Calculus, SMT, User-Propagation, Meta-Logic, Proof-Theory

1. Introduction

Satisfiability Modulo Theories (SMT) is the problem of finding models for formulas over a
predetermined set of first-order theories, such as integer/real arithmetic, arrays, and strings.
SMT solvers are nearly always implemented by combining propositional reasoning with (mostly-
separate) theory-specific decision procedures [1]. Adding support for a new theory in an existing
SMT solver is not easy for end-users: the new theory could be axiomatised in the solver’s input,
but this typically requires universal quantification [2, 3] and is unlikely to be as efficient as a
built-in theory reasoning engine. Alternatively, the solver could be modified directly to support
the desired theory, but this demands significant, solver-specific knowledge from the user and
incurs a maintenance overhead.

User propagation [4, 5] is a recent development in satisfiability solving that eases direct
modifications in the solvers while maintaining efficient implementation and reasoning practices.
End-users supply the solver a propagator as a loadable module which interacts with the solver
in response to solver actions. With the benefit of user propagation, adding reasoning in new
classical logics is usually straightforward, but non-classical logics are hard to be supported
as they require a complete redesign of the SMT solver’s internals or inventing sophisticated
embeddings to incorporate the intended non-classical semantics [6, 7].

AReCCa 2023: Automated Reasoning with Connection Calculi (associated with TABLEAUX 2023)
18 September 2023, Prague, Czech Republic
*Corresponding author.
$ clemens.eisenhofer@tuwien.ac.at (C. Eisenhofer); laura.kovacs@tuwien.ac.at (L. Kovács); michael@rawsons.uk
(M. Rawson)
� 0000-0003-0339-1580 (C. Eisenhofer); 0000-0002-8299-2714 (L. Kovács); 0000-0001-7834-1567 (M. Rawson)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:clemens.eisenhofer@tuwien.ac.at
mailto:laura.kovacs@tuwien.ac.at
mailto:michael@rawsons.uk
https://orcid.org/0000-0003-0339-1580
https://orcid.org/0000-0002-8299-2714
https://orcid.org/0000-0001-7834-1567
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Contributions. In contrast to model-based approaches that depend heavily on the semantics
of a specific logic [8, 9, 10, 6, 11], in this paper we suggest a completely syntactic proving
approach implemented via user propagation. We search for derivations in a calculus for some
logic by reasoning over the space of all possible derivations. In other words, we advocate theorem
proving in arbitrary calculi via SMT solving. One such supported calculus, which is the focus
of our paper, is the connection calculus. Our approach, while unusual, brings the following
advantages in general and to connection calculus in particular:

1. The implementation burden in SMT solving is significantly reduced, as the considered
meta-logic is classical in nature: either some postulate is provable or not.

2. By the very few restrictions, a large number of calculi can be supported in a relatively
uniform manner.

3. Meta-logical properties, such as monotonicity or permutation of assumptions, can be
generically handled and exploited during proving in order to improve efficiency.

4. Even logics for which no semantics are known can be supported. Moreover, logics for
which decision procedures are not known (or too complex) can be embedded.

5. If a postulate in the calculus carries some partial classical semantics, this partial informa-
tion can be propagated back into the solver to aid proving, potentially eliminating the
need for full classical semantics.

6. Built-in theories can be supported within even non-classical logics, in case the theories
may behave classically.

7. Proofs generated by an SMT solver can be replaced by a wide variety of proofs we can
represent within our system.

8. In some calculi, we can extract explicit counterexamples if no proof exists.

2. Preliminaries

We assume a given calculus has a finite number of rules. Each rule makes exactly one conclusion
from a finite set of premises. For any given conclusion, there is a known finite, but possibly
empty set of applicable rules that form the conclusion from their premises. A derivation of a
certain conclusion is a rooted tree such as shown below:

A B
C

D E F
G

H I
R

where the root 𝑅 concludes the theorem and leaves are axioms; recall, that axioms are rules
with no premises.

A deduction as above includes a variety of calculi, including sequent calculi [12] from Figure 1,
or the a connection calculus [13] from Figure 2, or a deduction system based on the Hindley-
Milner type inference [14].

AX -1 : 𝐹1 ⊢ 𝐹1 AX -2 : ⊥ ⊢ AX -3 : ⊢ ⊤

¬-left : Γ1 ⊢ 𝐴; Δ1

¬𝐴; Γ1 ⊢ Δ1

¬-right : 𝐴; Γ1 ⊢ Δ1

Γ1 ⊢ ¬𝐴; Δ1

∧-left : 𝐹1;𝐹2; Γ1 ⊢ Δ1

𝐹1 ∧ 𝐹2; Γ1 ⊢ Δ1

∧-right : Γ1 ⊢ 𝐹1; Δ1 Γ1 ⊢ 𝐹2; Δ1

Γ1 ⊢ 𝐹1 ∧ 𝐹2; Δ1

∨-left : 𝐹1; Γ1 ⊢ Δ1 𝐹2; Γ1 ⊢ Δ1

𝐹1 ∨ 𝐹2; Γ1 ⊢ Δ1

∨-right : Γ1 ⊢ 𝐹1;𝐹2; Δ1

Γ1 ⊢ 𝐹1 ∨ 𝐹2; Δ1

Perm-left : Γ1;𝐹2; Γ2;𝐹1; Γ3 ⊢ Δ1

Γ1;𝐹1; Γ2;𝐹2; Γ3 ⊢ Δ1

Perm-right : Γ1 ⊢ Δ1;𝐹2; Δ2;𝐹1; Δ3

Γ1 ⊢ Δ1;𝐹1; Δ2;𝐹2; Δ3

Weak -left : Γ1; Γ2 ⊢ Δ1

Γ1;𝐹1; Γ2 ⊢ Δ1

Weak -right : Γ1 ⊢ Δ1; Δ2

Γ1 ⊢ Δ1;𝐹1; Δ2

Figure 1: Some propositional rules of the sequent calculus system 𝐿𝐾 [12]. Here, 𝐹1, 𝐹2 are formulas,

whereas Γ1,Γ2,Γ3,Δ1,Δ2,Δ3 denote possibly-empty sequences of formulas.

2.1. Restrictions on Calculi

While the afore presented form of deduction is extremely general, we do have some requirements
in order to support a calculus. We expect derivations to be as shown above: in particular, there
must be a finite branching factor, both in the number of applicable rules and in the number
of premises to rules. Infinite branching in a calculus can often be avoided by various kinds of
indirection.

Our approach proceeds “upwards” from a goal via backwards chaining. Therefore, for
any given conclusion, it must be possible to compute the set of applicable rules from the
conclusion alone. Furthermore, each conclusion in the calculus is considered independently:
note that this differs from systems like analytic tableaux [15] or the usual presentation of natural
deduction [12], where context matters. Identical subgoals occurring at different locations in
proof search can be assumed to have the same proof.

While soundness and completeness of a considered calculus is beneficial, neither property is
essential: a satisfiable result may not be valid if the calculus is unsound, whereas an unsatisfiable
result might not hold if the calculus is incomplete (as discussed later).

2.2. User Propagation and a Theory of Goals

User propagation as implemented in Z3 allows asserting additional constraints to the solver in
response to solver decisions [4]. Justifications for the additional constraints are important such
that the solver can detect where to backjump to when conflicts arise. As an example, if our
theory contains a symmetric relation 𝑅 and the solver decides 𝑅(𝑠, 𝑡), we can propagate 𝑅(𝑡, 𝑠),
justified by 𝑅(𝑠, 𝑡), which we write 𝑅(𝑠, 𝑡) ⊩ 𝑅(𝑡, 𝑠). We use this mechanism to implement
our SMT solving approach via user propagation.

Our theory consists of a “goal” sort and a provability predicate ℱ . We write ℱ(𝐺) to mean

Axiom

{};𝑀 ;𝑃𝑎𝑡ℎ

Start

𝐶;𝑀 ; {}
𝜖;𝑀 ; 𝜖

Reduction

𝐶;𝑀 ;𝑃𝑎𝑡ℎ ∪ {¬𝐿}
𝐶 ∪ {𝐿};𝑀 ;𝑃𝑎𝑡ℎ ∪ {¬𝐿}

Extension

𝐶 ′ ∖ {¬𝐿};𝑀 ;𝑃𝑎𝑡ℎ ∪ {𝐿} 𝐶;𝑀 ;𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿};𝑀 ;𝑃𝑎𝑡ℎ

Figure 2: Propositional connection calculus as a deduction system, adapted from [16]. Here, 𝐶,𝐶 ′
are

clauses in 𝑀 and 𝐿 is a literal. The matrix𝑀 is valid if there is a derivation for 𝜖;𝑀 ; 𝜖.

{};𝑀 ; {¬𝐵,¬𝐴} {};𝑀 ; {¬𝐵}
{¬𝐴};𝑀 ; {¬𝐵} {};𝑀 ; {}

{¬𝐵};𝑀 ; {}
𝜖;𝑀 ; 𝜖

Figure 3: Example of proving𝑀 := {𝐴,¬𝐴 ∨𝐵,¬𝐵} in connection calculus deduction system.

that “𝐺 has a proof”; ℱ(𝑃,𝐺) to denote that “𝐺 has a proof with immediate premise 𝑃 ”; and
ℱ(𝑖, 𝑃,𝐺) to express that “𝐺 has a proof of depth at most 𝑖 with immediate premise 𝑃 ”.

3. Theorem Proving in Arbitrary Calculi via SMT Solving

We now describe our approach for syntactical theorem proving, in particular in the connection
calculus, via user propagation in SMT solving. While our approach can be applied to any SMT
engine and deduction system, we discuss and our work in the context of the Z3 SMT solver [17]
and the sequent calculus 𝐿𝐾 .

We begin by asserting that the goal is provable and then propagate applicable rules from
each goal that the solver decided to be provable as well. Exploiting the internal satisfiability
procedure of Z3, we already have a kind of idiosyncratic proof search, as illustrated next.

Example 1 (Proof Search by Propagating Applicable Rules)
Suppose we use system 𝐿𝐾 from Figure 1 and Z3 assigns ℱ(𝐴;𝐵 ∨ 𝐶 ⊢ 𝐴) to true. We can then
apply weakening on both the left and right sides of the sequent, permutation on the left, or the
∨-left rule, and therefore propagate

ℱ(𝐴;𝐵 ∨ 𝐶 ⊢ 𝐴) ⊩ ℱ(𝐵 ∨ 𝐶 ⊢ 𝐴) ∨
ℱ(𝐴 ⊢ 𝐴) ∨
ℱ(𝐴;𝐵 ∨ 𝐶 ⊢) ∨
ℱ(𝐵 ∨ 𝐶;𝐴 ⊢ 𝐴) ∨
(ℱ(𝐴;𝐵 ⊢ 𝐴) ∧ ℱ(𝐴;𝐶 ⊢ 𝐴))

We leave it up to the solver to handle backtracking search, but clearly the second disjunct leads to a
proof. Once Z3 at some point assigns ℱ(𝐴 ⊢ 𝐴), we can apply weakening or the axiom rule:

ℱ(𝐴 ⊢ 𝐴) ⊩ ℱ(⊢ 𝐴) ∨
ℱ(𝐴 ⊢) ∨
⊤

The last disjunct represents the lack of premises of the axiom rule, and therefore the whole prop-
agation is a tautology. If the goal was 𝐴;𝐵 ∨ 𝐶 ⊢ 𝐴, then Z3 can report a model satisfying
ℱ(𝐴;𝐵 ∨ 𝐶 ⊢ 𝐴) ∧ ℱ(𝐴 ⊢ 𝐴), from which we can extract a proof in 𝐿𝐾 .

Example 2 (Proof Search in Connection Calculus)
Similar, we can simulate connection calculus in SMT. Consider the example shown in Figure 3.
We start by ℱ(𝜀;𝑀 ; 𝜀) and propagate ℱ(𝜀;𝑀 ; 𝜀) ⊩ ℱ({𝐴};𝑀 ; 𝜀) ∨ ℱ({¬𝐴 ∨ 𝐵};𝑀 ; 𝜀) ∨
ℱ({¬𝐵};𝑀 ; 𝜀). As in 𝐿𝐾 , we consider the (local) goals like {¬𝐴 ∨𝐵};𝑀 ; 𝜀 atomic and imple-
ment them as constants of our “goal” sort.

In case the solver picks ℱ({¬𝐵};𝑀 ; 𝜀), we propagate ℱ({¬𝐴};𝑀 ; {¬𝐵}) ∧ ℱ({};𝑀 ; {}),
as this is the only applicable rule. We continue similarly.

3.1. Preventing Cyclic Proofs

Unfortunately, the intuitive encoding from Example 1 is unsound, since it permits cyclic deriva-
tions as next shown.

Example 3 (Cyclic Proofs)
Suppose we use the system 𝐿𝐾 from Figure 1 with the goal 𝐴;𝐵 ⊢, which is not provable in 𝐿𝐾 .
From ℱ(𝐴;𝐵 ⊢), we propagate a disjunction containing ℱ(𝐵;𝐴 ⊢), and then propagate another
disjunction containing ℱ(𝐴;𝐵 ⊢) once again. However, Z3 has already assigned ℱ(𝐴;𝐵 ⊢) true
and hence reports a model, having discovered a cyclic “proof”.

To avoid unsoundness issues due to cyclic derivations, we must perform a cyclicity check.
For doing so, we introduce the binary form of ℱ , as it allows us to track and maintain during
reasoning the transitive, asymmetric relation “𝐺 has a proof containing an ancestor 𝐴”. More
precisely, we consider the relation graph of the binary relation induced by the propositional
variables ℱ(𝑃,𝐺). In case of a cycle, we eliminate it by propagating a conflict with respect to
all propositional variables involved in the cycle.

Example 4 (Preventing a Cyclic Proof)
Considering Example 3, the chain of propagated atoms includes ℱ(𝐴;𝐵 ⊢, 𝐵;𝐴 ⊢) and subse-
quentlyℱ(𝐵;𝐴 ⊢, 𝐴;𝐵 ⊢). However, we detect a cycle and prevent the cyclic “proof”, backtracking
from this branch and attempting another. Since the goal is not a theorem in 𝐿𝐾 and the search
space is finite, eventually the solver will indicate unsatisfiability.

3.2. Infinite Search Spaces

Many useful calculi have large, redundant, but ultimately finite search spaces. Here the procedure
sketched for the propositional system 𝐿𝐾 is already complete. However, in the case of infinite

search spaces a wrong decision will cause the solver to get lost in barren space, from which it
might never return. Avoiding such scenarios is a challenging task for future work along the
approaches discussed next.

Iterative deepening, as used in connection systems [18], may be employed as follows: we could
use the ternary form of ℱ to determine that there are no proofs of a certain size before trying
larger sizes, perhaps re-using this information elsewhere in search as in failure caching [19].
Another option disables Z3’s support for relevancy propagation [20] and assuming all atoms to
be true by default, exploring all branches simultaneously and prevent further expansions in
case one branch is completed and hence avoiding getting stuck. It may also be possible to use
complementary calculi to disprove a certain goal, causing a partial “restart”, see Section 4.5.

As well as merely infinite search spaces, there is a special case in which the search space has
an infinite chain where only one rule is applicable, a well-known problem in tree search [21].
In this case, even unit propagation in the solver will never terminate. In practice, this happens
relatively rarely, but solutions for infinite search spaces should take this into account.

4. Logic-Specific Optimization

While we envision our approach to be widely applicable without special-purpose modifications,
there are some recurring themes among many calculi. In the sequel, we discuss our “box of
tricks” to be applied whenever their prerequisite properties are met by the calculus.

4.1. Improving the Calculus

In some cases, the proof calculus is extremely ill-suited to automation. While the system 𝐿𝐾 as
described initially by Gentzen [12] is not adequate for efficient, machine-supported theorem
proving, a few well-known tweaks to the calculus can result in significantly better performance:
we can improve proving by eliminating structural rules, treating each side of the sequent as a
set, and strengthening the axiom rules to be applicable regardless of extraneous formulae on
either side. On the solver side, we adapt our reasoning engine to reuse the same variables “goal”
variables for elements that should be treated the same, e.g., ℱ(𝐴;𝐴;𝐵 ⊢ ⊥) = ℱ(𝐵;𝐴 ⊢ ⊥).

4.2. Acyclic Calculi

Notwithstanding the discussion in Section 3.1, some calculi either explicitly allow cyclic proofs,
or more often cannot generate cycles by virtue of their rules. In either case, we can forgo the
cycle-checking. For example, the system 𝐿𝐾 with incorporated structural optimizations as
described in Section 4.1 has this property and hence does not require tracking the ancestry of
a derivation. The presented connection calculus also has this property, by a short inductive
argument.

4.3. Monotonicity

Sequent calculi very often have the monotonicity meta-logical property: that is, if 𝐴 ⊢ 𝐶 then
𝐴,𝐵 ⊢ 𝐶,𝐷. This can be exploited to improve performance. Consider the solver already

assigned ℱ(𝐴 ⊢ 𝐶) to true whereas ℱ(𝐴;𝐵 ⊢ 𝐶;𝐷) is assigned to false. By monotonicity, we
already have a conflict, but the solver will not detect this on its own without lengthy search.
We can also propagate monotonicity information. If we have ℱ(Γ ⊢ Δ), we propagate all
ℱ(Γ′ ⊢ Δ′) such that Γ ⊆ Γ′ and Δ ⊆ Δ′. Naturally, we only propagate monotonicity
information in case the respective atoms are already present in the search space, otherwise
there would be infinitely many propagations. The contrapositive propagation is also possible.

4.4. Ordering

Another common problem in theorem proving is that there might be several (similar) ways
to reach exactly the same proving state. Proof search can become highly symmetrical. To
break this symmetry, we can order rule applications, cf. ordered resolution [22] or matings
pruning [23].

Example 5 (Symmetric Rule Applications)
Consider the sequent 𝐴1 ∧ 𝐵1, . . . , 𝐴𝑛 ∧ 𝐵𝑛 ⊢ ⊥. There are 𝑛! possible derivations using the
∧-right rule, each failing in the same sequent 𝐴1, . . . , 𝐴𝑛, 𝐵1, . . . , 𝐵𝑛 ⊢ ⊥. Nonetheless, the
solver will fail to detect this symmetry, causing the solver to inspect all possible orderings.

In some cases, we may be able to prevent such unnecessary blow-ups by establishing a partial
order on the rules applied by a variety of methods from theorem proving. The connection
calculus, for instance, has complete “don’t-care non-determinism” with respect to which open
goal is selected for the next connection, although of course it may be beneficial to choose one
or another [24, 25]. The partial order should be as total as possible, but reachability must be
preserved.

4.5. Complementary Calculi

Some logics have a useful complementary calculus that allows disproving statements in the logic.
This duality allows a possible optimisation for logics with a complementary calculus. It may
be possible to disprove a statement quickly, but exhausting all possible proofs is considerably
harder or even impossible; equally, a statement may be proved quickly but disproving it can be
difficult. Therefore, we can explore both the positive and the complementary calculi in a single
proof attempt, exchanging information between the two.

4.6. Global Constraints

Note that the connection calculus from Figure 2 is the propositional version, rather than the
arguably more interesting first-order variant. This is because the first-order variant requires
that a global substitution satisfies a number of side conditions imposed by the application of
rules. Therefore, the first-order version of Figure 2 does not have independent goals in the
manner that we require, as solving one subgoal in a certain way may prevent the solution of
another. This property necessitates considerable backtracking or communication in connection
and other free-variable systems [26, 27].

Such difficulties could be remedied by “rephrasing” the calculus once more, perhaps carrying
around an explicit substitution in the manner of Algorithm W [28] and requiring a single,

compound premise for the extension rule as a result. Now we can handle the calculus once
more, but there would be no shared sub-goals for Z3 to exploit. For example, variants of
splitting [13, 29] could provide us efficient remedies.

SMT solvers have no problem maintaining a set of global constraints and backtracking over
decisions that affect them — it is arguably what they do best, in fact. Having rules to propagate
an equation, such as 𝐿 = ¬𝐿′ over an algebraic datatype sort [30] with uninterpreted constants
representing rigid variables could be a convenient way out.

5. Conclusions

We advocate theorem proving in arbitrary calculi, in particular in connection calculus, by SMT
solving via user-propagators. Our work is inspired by the application of user-propagators to
simulate analytic tableaux in SMT solving [31]. Yet, unlike [31], we do not build a model by
applying rules to get assignments to subformulas, but consider rules themselves as the relevant
objects in the model to construct derivations. This makes our approach more generic, although
we cannot usually generate explicit models from successful SMT solving runs.

The cyclicity check proposed in our work is related to the foundedness check in answer
set programming [32], where atoms are required not to be only justified by cycles in a set of
implications [10].

A different encoding of the first-order connection calculus as a satisfiability problem was
implemented in ChewTPTP [33]. Extending and/or embedding our work with such techniques
is an interesting task for future work.

As state-of-the-art techniques from satisfiability solving, such as conflict-driven clause learn-
ing (CDCL) or local search, may have a clear interpretation at the calculus level, we believe our
approach can further be extended with specialised proof procedures for non-classical calculi.

Acknowledgments

We acknowledge funding from the ERC Consolidator Grant ARTIST 101002685, the TU Wien
SecInt Doctoral College, and the FWF SFB project SpyCoDe F8504.

References

[1] D. Kroening, O. Strichman, Decision Procedures - An Algorithmic Point of View - Second
Edition, 2016. doi:10.1007/978-3-662-50497-0.

[2] L. M. de Moura, N. S. Bjørner, Efficient e-matching for SMT solvers, in: CADE, Springer,
2007, pp. 183–198. doi:10.1007/978-3-540-73595-3_13.

[3] Y. Ge, L. M. de Moura, Complete instantiation for quantified formulas in satisfiability
modulo theories, in: CAV, 2009, pp. 306–320. doi:10.1007/978-3-642-02658-4_25.

[4] N. S. Bjørner, C. Eisenhofer, L. Kovács, Satisfiability modulo custom theories in Z3, in:
VMCAI, Springer, 2023, pp. 91–105. doi:10.1007/978-3-031-24950-1_5.

[5] K. Fazekas, A. Niemetz, M. Preiner, M. Kirchweger, S. Szeider, A. Biere, IPASIR-UP: user
propagators for CDCL, in: 26th International Conference on Theory and Applications of

http://dx.doi.org/10.1007/978-3-662-50497-0
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/978-3-031-24950-1_5

Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 8:1–8:13. doi:10.4230/LIPIcs.
SAT.2023.8.

[6] K. Claessen, D. Rosén, SAT modulo intuitionistic implications, in: LPAR, Springer, 2015,
pp. 622–637. doi:10.1007/978-3-662-48899-7_43.

[7] C. Fiorentini, R. Goré, S. Graham-Lengrand, A proof-theoretic perspective on smt-solving
for intuitionistic propositional logic, in: TABLEAUX, Springer, 2019, pp. 111–129. doi:10.
1007/978-3-030-29026-9_7.

[8] J. P. M. Silva, K. A. Sakallah, GRASP: A search algorithm for propositional satisfiability,
IEEE Trans. Computers 48 (1999) 506–521. doi:10.1109/12.769433.

[9] M. Schmidt-Schauß, G. Smolka, Attributive concept descriptions with complements, Artif.
Intell. 48 (1991) 1–26. doi:10.1016/0004-3702(91)90078-X.

[10] F. Lin, Y. Zhao, ASSAT: computing answer sets of a logic program by SAT solvers, Artif.
Intell. 157 (2004) 115–137. doi:10.1016/j.artint.2004.04.004.

[11] Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full proposi-
tional temporal logic, in: CAV, volume 697, Springer, 1993, pp. 97–109. doi:10.1007/
3-540-56922-7_9.

[12] G. Gentzen, Untersuchungen über das logische schließen. i., Mathematische zeitschrift 35
(1935) 176–210.

[13] W. Bibel, Automated theorem proving, 2nd Edition, Artificial intelligence, Vieweg, 1987.
[14] R. Hindley, et al., The principal type-scheme of an object in combinatory logic, Transactions

of the american mathematical society 146 (1969) 29–60.
[15] M. D’Agostino, D. M. Gabbay, R. Hähnle, J. Posegga, Handbook of tableau methods, 2013.

doi:10.1007/978-94-017-1754-0.
[16] J. Otten, Restricting backtracking in connection calculi, AI Communications 23 (2010)

159–182.
[17] L. M. de Moura, N. S. Bjørner, Z3: An Efficient SMT Solver, in: TACAS, Springer, 2008, pp.

337–340.
[18] J. Otten, W. Bibel, leancop: lean connection-based theorem proving, J. Symb. Comput. 36

(2003) 139–161. doi:10.1016/S0747-7171(03)00037-3.
[19] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, K. Mayr, Setheo and

e-setheo-the cade-13 systems, Journal of Automated Reasoning 18 (1997) 237–246.
[20] L. de Moura, N. Bjørner, Relevancy Propagation, Technical Report MSR-TR-2007-140,

Microsoft Research, Tech. Rep. (2007). URL: https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/tr-2007-140.pdf.

[21] L. Orseau, L. Lelis, T. Lattimore, T. Weber, Single-agent policy tree search with guarantees,
Advances in Neural Information Processing Systems 31 (2018).

[22] L. Bachmair, H. Ganzinger, Resolution theorem proving., Handbook of automated reason-
ing 1 (2001).

[23] R. Letz, Using matings for pruning connection tableaux, in: International Conference on
Automated Deduction, Springer, 1998, pp. 381–396.

[24] O. Ibens, R. Letz, Subgoal alternation in model elimination, in: International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, Springer, 1997, pp.
201–215.

http://dx.doi.org/10.4230/LIPIcs.SAT.2023.8
http://dx.doi.org/10.4230/LIPIcs.SAT.2023.8
http://dx.doi.org/10.1007/978-3-662-48899-7_43
http://dx.doi.org/10.1007/978-3-030-29026-9_7
http://dx.doi.org/10.1007/978-3-030-29026-9_7
http://dx.doi.org/10.1109/12.769433
http://dx.doi.org/10.1016/0004-3702(91)90078-X
http://dx.doi.org/10.1016/j.artint.2004.04.004
http://dx.doi.org/10.1007/3-540-56922-7_9
http://dx.doi.org/10.1007/3-540-56922-7_9
http://dx.doi.org/10.1007/978-94-017-1754-0
http://dx.doi.org/10.1016/S0747-7171(03)00037-3
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-140.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-140.pdf

[25] G. C. Kertész, G. Papp, P. Szeredi, D. Varga, Z. Zombori, Ordering subgoals in a backward
chaining prover (2021).

[26] M. Färber, A curiously effective backtracking strategy for connection tableaux, arXiv
preprint arXiv:2106.13722 (2021).

[27] J. Cailler, J. Rosain, D. Delahaye, S. Robillard, H. L. Bouziane, Goéland: A concurrent
tableau-based theorem prover (system description), in: International Joint Conference on
Automated Reasoning, Springer International Publishing Cham, 2022, pp. 359–368.

[28] R. Milner, A theory of type polymorphism in programming, Journal of computer and
system sciences 17 (1978) 348–375.

[29] E. N. Haga, Complexity of variable splitting, Master’s thesis, University of Oslo, 2008.
[30] N. S. Bjørner, Integrating decision procedures for temporal verification, Ph.D. thesis,

Stanford University, USA, 1998. URL: https://searchworks.stanford.edu/view/4077712.
[31] C. Eisenhofer, R. Alassaf, M. Rawson, L. Kovács, Non-classical logics in satisfiability

modulo theories, in: TABLEAUX, 2023.
[32] T. Eiter, G. Ianni, T. Krennwallner, Answer set programming: A primer, Springer, 2009.
[33] J. Bongio, C. Katrak, H. Lin, C. Lynch, R. E. McGregor, Encoding first order proofs in SMT,

in: SMT, 2007, pp. 71–84. doi:10.1016/j.entcs.2008.04.081.

https://searchworks.stanford.edu/view/4077712
http://dx.doi.org/10.1016/j.entcs.2008.04.081

	1 Introduction
	2 Preliminaries
	2.1 Restrictions on Calculi
	2.2 User Propagation and a Theory of Goals

	3 Theorem Proving in Arbitrary Calculi via SMT Solving
	3.1 Preventing Cyclic Proofs
	3.2 Infinite Search Spaces

	4 Logic-Specific Optimization
	4.1 Improving the Calculus
	4.2 Acyclic Calculi
	4.3 Monotonicity
	4.4 Ordering
	4.5 Complementary Calculi
	4.6 Global Constraints

	5 Conclusions

