Old or Heavy?
Decaying Gracefully with Age/Weight Shapes

Michael Rawson and Giles Reger

University of Manchester, Manchester, UK

Abstract. Modern saturation theorem provers are based on the given-
clause algorithm, which iteratively selects new clauses to process. This
clause selection has a large impact on the performance of proof search
and has been the subject of much folklore. The standard approach is
to alternate between selecting the oldest clause and the lightest clause
with a fixed, but configurable age/weight ratio (AWR). An optimal fixed
value of this ratio is shown to produce proofs significantly more quickly
on a given problem, and further that varying AWR during proof search
can improve upon a fixed ratio. Several new modes for the Vampire
prover which vary AWR, according to a “shape” during proof search are
developed based on these observations. The modes solve a number of
new problems in the TPTP benchmark set.

1 Introduction

Currently, the most successful theorem provers (such as Vampire [4], E [12],
and SPASS [17]) for first-order logic are saturation-based, utilising the well-
known given-clause algorithm. Simply, this algorithm saturates a set of clauses by
iteratively selecting a clause and performing all non-redundant inferences with it
until all clauses have been selected or the empty clause (witnessing inconsistency)
has been found. Clearly, the order in which clauses are selected is key to the
performance of the algorithm. Over the past few decades a certain amount of
folklore has built up around the best methods for clause selection and recent work
by Schulz and Méhrmann [13] systematically studied these. Our work extends
this study with new results and also introduces the concept of a variable clause
selection strategy (one that changes over time), instantiated with two simple
patterns (or shapes) that prove to be pragmatically useful.

Clause selection strategies that alternate between selecting clauses based on
age (i.e. in a first-in-first-out manner) and weight (i.e. those with the fewest
symbols first) are the subject of this work. It was confirmed by Schulz and
Mohrmann that alternating these two heuristics outperforms either by itself. The
ratio of these selections is the age/weight ratio (AWR), as this is the terminology
employed by the Vampire theorem prover, the vehicle for our study.

After covering relevant background material in Section 2 the remainder of the
paper makes two main contributions. Firstly, Section 3 experimentally confirms
the folklore that (i) the choice of age/weight ratio often has a significant effect on

the performance of proof search, and (ii) there is no “best” age/weight ratio: in-
deed, a large range of pragmatically useful ratios exist. Section 4.1 demonstrates
that varying the age-weight ratio over time can achieve better performance than
a fixed ratio, and therefore motivates the addition of so-called age/weight shapes
for varying the ratio over time. Experiments (Section 5) with these new options
implemented in the Vampire theorem prover show a significant improvement in
coverage, proving many new problems unsolvable by any previous configuration
of Vampire.

2 Background
This section introduces the relevant background for the rest of the paper.

First-Order Logic and Weight. Our setting is the standard first-order predicate
logic with equality. A formal definition of this logic is not required for this
paper but an important notion is that of the weight of a clause. In first-order
logic, terms are built from function symbols and variables, literals are built from
terms, and clauses are disjunctions of literals. The weight of a term/literal is the
number of symbols (function, variable, or predicate) occurring in it. The weight
of a clause is the sum of the weights of its literals.

Saturation-Based Proof Search. Saturation-based theorem provers saturate a
set of clauses S with respect to an inference system I: that is, computing a
set of clauses S’ by applying rules in I to clauses in S until no new clauses
are generated. If the empty clause is generated then .S is unsatisfiable. Calculi
such as resolution and superposition have conditions that ensure completeness,
which means that a saturated set S is satisfiable if it does not contain the
empty clause as an element. As first-order logic is only semi-decidable, it is not
necessarily the case that S has a finite saturation, and even if it does it may be
unachievable in practice using the available resources. Therefore, much effort in
saturation-based first-order theorem proving involves controlling proof search to
make finding the empty clause more likely (within reasonable resource bounds).
One important notion is that of redundancy, being able to remove clauses from
the search space that are not required. Another important notion are literal
selections that place restrictions on the inferences that can be performed. Both
notions come with additional requirements for completeness. Vampire often gives
up these requirements for pragmatic reasons (incomplete strategies have been
found to be more efficient than complete ones in certain cases) and in such cases
the satisfiability of S upon saturation is unknown.

The Given Clause Algorithm and AWR Clause Selection. To achieve saturation,
the given clause algorithm organises the set of clauses into two sets: the active
clauses are those that have been active in inferences, and the passive clauses are
those that have not. Typically, a further unprocessed set is required in order to
manage the clauses produced during a single iteration of the loop. Realisations of

the given clause algorithm generally differ in how they organise simplifications.
There are two main approaches (both implemented by Vampire, originally found
in the eponymous theorem provers Otter [5] and D1SCOUNT [1]): the Otter loop
uses both active and passive for simplifications, whereas the Discount loop uses
only active.

The algorithm is centred around the clause selection process. As previously
mentioned, there are two main heuristics for this:

— By Age (or First-in/First-out) clause selection prefers the oldest clause (pro-
duced earlier in proof search), simulating a breadth-first search of the clause
space. In Vampire the age of a clause is the number of inferences performed
to produce it (input clauses have age 0).

— By Weight (or symbol-counting) clause selection prefers the lightest clause.
The intuition behind this approach is that the sought empty clause has zero
symbols and lighter clauses are in some sense closer to this. Furthermore,
lighter clauses are more general in terms of subsumption and tend to have
fewer children, making them less explosive in terms of proof search.

Schulz and Mohrmann show that alternating these heuristics is beneficial. In
Vampire this alternation is achieved by an age/weight ratio (AWR) implemented
by a simple balancing algorithm. The balance is initialised to 0 and used as
follows: a negative balance means that a clause should be selected by age, whereas
a positive balance means that a clause should be selected by weight; given a ratio
of a : w the balance is incremented by a when selecting by age and decremented
by w when selecting by weight. Figure 1 gives the Discount algorithm along with
balance-based AWR clause selection. The lines relevant to clause selection are
marked with v'.

Portfolio Solvers. Vampire is a portfolio solver and is typically run in a mode that
attempts multiple different strategies in quick succession, e.g. in a 30 second run
it may attempt 10 or more different strategies, and may run these in parallel with
different priorities [8]. These strategies employ many different options including
different saturation algorithms (including Otter and Discount), preprocessing
options, literal selection strategies, inference rules, and clause selection heuristics.
The portfolio mode is a significant improvement on any single strategy.

Vampire’s portfolio mode also includes an additional option relevant to clause
selection: the --nongoal weight_coefficient option specifies a multiplier to
apply to the weight of non-goal clauses, thus preferring clauses in or derived from
the problem conjecture in clause selection. Use of this heuristic is orthogonal to
the age/weight ratio and is not investigated further here.

Related Work. Many clause selection approaches are taken by other solvers.
Otter 3.3 [6] selects either by age, by weight or manually. Prover9 [7] allows a
configurable age/weight ratio. E [12] allows the user to specify an arbitrary num-
ber of priority queues and a weighted round-robin scheme that determines how
many clauses are picked from each queue. The default is to use a combination
of age and weight selection, although there is also a complex strategy developed

input: init: set of clauses;, a : w age-weight ratio

var active, passive, unprocessed: set of clauses;
var given, new: clause;
active :={;
unprocessed := init;
v balance := 0;
loop
while unprocessed # ()
new : =pop (unprocessed);
if new = [0 then return unsatisfiable;

if retained(new) then (* retention test *)
simplify new by clauses in active; (* forward simplification *)
if new = 0 then return unsatisfiable;
if retained(new) then (* another retention test *)
simplify active using new ; (* backward simplification *)

move the simplified clauses to unprocessed;
add new to passive
if passive = () then return satisfiable or unknown

v if balance > 0 then

v given := lightest clause in passive;
v balance := balance — w;

v else

v given := oldest clause in passive;
v balance:= balance + a;

move given from passive to active;
unprocessed : =infer(given, active); (* generating inferences *)

Fig. 1. The Discount Saturation Algorithm with AWR clause selection

by a genetic algorithm [11]. SPASS [17] uses symbol-counting based clause selec-
tion. iProver [3] follows E in having a number of configurable queues but relies
mainly on age and weight heuristics in those queues. The general idea in this
paper of a varying age/weight ratio over time is applicable to any ratio-based
clause selection strategy, and our specific results apply to those that take a ratio
between age and weight.

3 Optimising Age/Weight Ratios

Two assumptions from folklore are confirmed experimentally:

1. The choice of age/weight ratio often has a significant effect on the perfor-
mance of proof search.
2. There is in general no single best age/weight ratio for a given set of problems.

These are supported by the work of Schulz and Méhrmann but are explored in
more depth here.

Activations against AWR - PRO017+2

2000

1750

Activations
= - =
o N ul
o u o
o o o

750
500

250
-10 -8 -6 -4 -2 0 2
Logarithmic AWR

Fig. 2. The number of given-clause loops reported by Vampire after finding a proof
with 1-second runs on a TPTP problem, PRO017+2. In between the peaks on either
side, the function of L is discontinuous with large peaks and troughs, but follows an
approximate trend and settles toward the global optimum. PRO017+2 exhibits typifying
behaviour for TPTP, based on manual inspection of several hundred such plots.

3.1 Logarithmic AWR

Visualising AWR values is more easily achieved if they have a continuous scale.
AWR values are mathematically QT, the positive rational numbers, but in prac-
tice are more easily visualised logarithmically. Therefore, the logarithmic AWR,
L is defined in terms of age A and weight W as

A
L =log, (W)

As L tends to positive infinity, Vampire selects only by weight, whereas if L
tends to negative infinity Vampire selects only by age. L = 0 represents the
middle ground of a 1:1 age/weight ratio. Note that the balancing algorithm used
by Vampire does not make use of this value (it still requires two numbers) but
the quantity is used in this work to show continuous AWR values.

3.2 Experiments

As an initial illustrative example of how varying the AWR effects the number
of clauses required to be processed before a proof is found consider Figure 2.
This demonstrates the effect that varying AWR can have: a smaller number of
activations means that fewer clauses were processed, which in general means

Table 1. Relative performance gain, showing the ratio in activations between the best
AWR setting for a given problem and another base setting. A comparison is drawn
between 1:1 (Vampire’s default), 1:5 (the best-behaved from Schulz and Méhrmann),
and the worst setting for the problem. Where the problem is not solved at all by the
base setting, it is ignored.

Base Setting|% Maximum Gain|% Mean Gain (Standard Deviation)

1:1 13,356 126 163
1:5 13,367 144 170
(worst) 22,201 395 760

that a proof was found faster!. On the problem shown, a good AWR value is
over 400% better by this metric than the worst AWR, value.

This experiment was repeated on the whole TPTP problem set, excluding
problems Vampire does not currently support (e.g. higher-order problems). Vam-
pire ran for 1 second in default mode with the discount saturation algorithm?
using a sensible set of AWR values (see Table 2) — these are the values used in
Vampire’s portfolio mode. These tend to favour weight-first over age-first as this
has been experimentally shown to be preferable. Problems not solved by any of
these, or those solved trivially (e.g in preprocessing) are removed. The whole set
yielded data for 7,947 problems.

The first result is that choosing a good AWR value for a problem is well-
rewarded. Table 1 summarises the impact that choosing the best AWR can
have. Compared to the default, Vampire can perform, on average, 1.26 times
fewer activations, which is modest but (as Table 2 shows) just under 10% of
problems are no longer proven by choosing the default. It is more relevant to
note that there are cases where Vampire can do much better by selecting a
different AWR, value. Therefore, choosing a better AWR value can go from no
solution to a solution and can do so faster, but not necessarily. In the worst case
(choosing the pessimal AWR value) Vampire performs almost 4 times as many
activations.

The second result is that there is no “best” AWR across this full set of
problems. Drop in performance is defined to be how many times more activations
were required for a proof under a given AWR, compared to the best AWR. Table
2 shows, for each AWR value, the % of problems solved, the number solved
uniquely, and the maximum and mean drop in performance. No AWR value
solves all problems, with the best being 1:5. A ratio of 1:4 produces an unusually
small maximum performance drop. Schulz and M6éhrmann found that 1:5 had a
similar property, but this might be explained by differences in prover and test
environment. It is interesting to note that the extreme AWR values solve fewer

1 It should be noted that if a small number of clauses are extremely expensive to
process it may be slower than a larger number of less-expensive clauses, but in general
this is a good heuristic measure for prover performance. It also avoids reproducibility
issues involved with using system timing approaches.

% The default LRS [10] saturation algorithm can be non-deterministic.

Table 2. Per-AWR value results on 1 second runs over 7,947 TPTP problems.

AWR, |% Solved|Uniques|% Maximum Drop|% Mean Drop (Standard Deviation)
8:1 85.25 16 15,067 137 198
5:1 86.10 1 12,222 133 164
4:1 86.93 1 10,144 132 142
3:1 87.63 2 10,500 129 141
2:1 88.62 3 11,267 127 145
3:2 89.83 2 11,989 127 151
5:4 89.98 4 12,500 126 155
1:1 90.56 4 13,356 126 163
2:3 91.20 9 14,767 128 179
1:2 91.68 0 16,267 131 197
1:3 91.81 5 19,056 137 230
1:4 91.85 3 1,741 138 67
1:5 92.00 2 13,367 144 170
1:6 91.57 1 10,644 147 146
1:7 91.49 1 10,489 149 144
1:8 91.09 2 10,133 153 145
1:10 90.52 1 10,178 160 153
1:12 90.00 0 10,167 165 162
1:14 89.29 4 10,300 170 175
1:16 89.42 5 10,133 174 176
1:20 88.61 3 10,089 182 194
1:24 88.26 2 10,133 189 208
1:28 87.57 2 9,922 196 224
1:32 87.01 1 10,000 199 236
1:40 86.23 4 9,878 209 264
1:50 84.93 1 9,878 217 288
1:64 84.17 2 10,122 228 319
1:128 81.34 3 10,744 257 416
1:1024| 73.11 23 22,201 283 755

problems overall but solve the most uniquely. This is typical in saturation-based
proof search: approaches that do not perform well in general may perform well
in specific cases where the general approach does not.

In summary, these results confirm the previous assumptions often made in
folklore. It should be noted that this is a small experiment (1 second runs in
default mode) and the relative performance of different AWR values cannot be
generalised, but the general result that they are complementary can.

4 Variable AWR for Vampire

This section motivates and defines a clause selection approach which varies the
AWR value over time.

Best AWR series found by random walk - PRO017+2

-1.5
o
E
S 20
€
<
F=]
5 -25
(@]
o
-
-3.0
-3.5
0 50 100 150 200 250 300

Activations

Fig. 3. The AWR series that produced the lowest number of activations on a particular
problem, smoothed in order to show the actual effect on proof search. This is a search
strategy that a single fixed AWR cannot reproduce.

4.1 The Optimal AWR Over Time

Although choosing a good AWR value is important, this is covered in part by
the use of strategy scheduling in which many AWR values are tried in sequence
(along with other prover options). Additionally, given that varying the AWR
can have such a large impact, it seems likely that a constant AWR fixed for the
entire proof search is unlikely to be optimal for any given problem. This can
be shown by running Vampire with a randomised sequence of age/weight ratios
given by a random walk repeatedly, then finding the best after a large number of
repetitions. Applying this method with 10,000 repetitions to the problem seen
earlier (PRO017+2) yields the example AWR trend shown in Figure 3, which
reduces the best number of activations from 330 with a fixed AWR, to 287 with
a varying AWR. Unsurprisingly, in ad-hoc experiments on other problems, the
best shape is rarely constant. This suggests that implementing other shapes,
such as an increasing or decreasing trend, might lead to quicker proofs in the
Vampire theorem prover.

4.2 Varying AWR (in Vampire)

An implementation of dynamically-varying AWR values in Vampire is described
below. In general any possible sequence that the AWR could follow during proof
search can be used. However, some details constrain the design space:

1. Changing the AWR too frequently or sharply has little effect, due to the
“balancing” algorithm — see Section 1.

0.8

0.6 g : — constant
i decay:16

decay:64
0.4 ; ---- decay:256

AWR, proportional
AWR, proportional

________________ g i —— constant
0.2 ! H 0.2 H converge:16
: Py ! converge:64
1 H H — .
0.0) T S 0.0 MR EE:NNNENE. M. il converge:256

0 200 400 600 800 1000 0 200 400 600 800 1000
Activations Activations

Fig. 4. The new decay and converge AWR shapes as implemented in Vampire. Different
curves exhibit the effect of the AWR shape frequency setting.

2. A general (configurable) shape is more likely to be widely applicable than a
specific series of data points.
3. The shape must extend naturally to an indefinitely-long proof search.

In this work two general trends are explored: a trend away from a given start
AWR toward 1:1 (“decay”), and a trend from 1:1 toward a given end AWR
(“converge”). Investigation showed that even fluctuating sequences had a general
trend, and further that these two fixed trends are reasonable approximations of
these trends. The start/end AWR values are taken from the portfolio mode:
these values are known to be useful in a fixed-AWR, context, and while this may
not generalise to a dynamic-AWR, context, it is a useful starting point pending
integration of AWR shape parameters into strategy scheduling.

Since a simple linear shape does not extend well to indefinite proof search (it
is unclear what should happen after either 1:1 or the target AWR is reached), an
exponential decay function is used instead. These exponential shapes are further
parameterised by an integral shape frequency setting, which controls the rate of
decay or convergence: every n steps, the difference between the current and the
target AWR is halved, rounding where necessary. In future, this might allow the
use of repeating patterns such as a sinusoid, hence frequency. Figure 4 illustrates
rates at which the new configurations converge or decay from the fixed AWR
setting for some indicative frequency settings.

Our approach here was restricted by the balancing algorithm used internally,
as AWR steps must be discrete and do not take effect immediately. An alternative
approach might be to use an age/weight probability, rather than a ratio, from
which age or weight decisions would be pseudo-randomly (but reproducibly)
taken with the use of a seeded pseudo-random number generator, permitting
use of continuous age/weight functions.

Two new options are implemented: ——age_weight_ratio_shape can take the
values constant, decay, or converge and selects one of the above shapes; and
--age weight_ratio_shape_frequency specifies the frequency (rate) or conver-
gence/decay (default is 100). These are used with the existing --age _weight ratio

option (default 1:1) to give a number of new option combinations, which can be
used in conjunction with Vampire’s portfolio mode pending integration into the
strategy schedules. This version of the prover is currently in a separate branch in
the main Vampire source repository®. Another option, -—age_weight_ratio_b is
implemented (default 1:1), controlling the initial AWR value of converge or the
final AWR value of decay.

5 Experimental Evaluation

Two experiments evaluate the new techniques. The first compares the various op-
tions attempting to draw some conclusions about which option values work well
together. The second looks at how useful the new options are in the context of
portfolio solving. Both experiments use the TPTP (version 7.1.0) benchmark [16]
and were run on StarExec [14].

5.1 Comparing New Options

Vampire ran in default mode (with the discount saturation algorithm) for 10s
whilst varying age_weight_ratio and age_weight_ratio_shape_frequency for
several AWR, shapes: constant, converging from 1:1, decaying to 1:1, converging
from 1:4 and decaying from 1:4.

Results are given in Table 4. The results for the different shapes are grouped
into columns and then by frequency with rows giving results per AWR, value.
The total number of problems solved and those solved uniquely are also reported.
The best combination of options overall was decaying from an initial age/weight
of 1:100 with frequency 1000. Longer frequencies tended to do better, suggesting
that more time at the intermediate AWR values is preferable. Unique solutions
are distributed well in general, showing that the new options are complementary.

5.2 Contribution to Portfolio

Our next experiment aims to answer the question “How much can the portfolio
mode of Vampire be improved using these new options?”. To address this the new
options ran on top of the portfolio mode used in the most recent CASC compe-
tition CASC-J9 [15]. Note that the CASC-J9 portfolio mode contains techniques
completely unrelated to the age/weight ratio, e.g. finite model building [9], as
well as other options related to clause selection, e.g. non-goal weight coefficient
and set-of-support.

Vampire first ran to establish baseline performance in the given portfolio
mode on all problems in TPTP, with a wallclock time limit of 300 seconds. New
options were applied on top of the portfolio mode options, using the existing
AWR values in the various strategies as the starting point. Three shapes are
employed: constant (baseline), converging from 1:1 and decaying to 1:1. The

% https://github.com/vprover/vampire/tree/awr-shapes

Table 3. Results for the tested configurations. Proved refers to the total number of
problems a configuration solved. Fresh is the number of problems a configuration solved
which were not solved by the baseline. Uniques is the number of problems a config-
uration solved which were not solved by any other configuration. u-score is a refined
unique score which correlates to a configuration’s utility in solving new problems, as
used in Hoder et al. [2].

Configuration Frequency Proved Fresh Uniques u-score

baseline - 13,0570 1 714.2
converge 1 13,039 24 3 714.3
converge 5 13,029 27 1 709.5
converge 10 13,028 35 5 714.3
converge 50 13,015 45 5 712.8
converge 100 12,976 51 1 705.9
converge 500 12,895 63 4 698.3
converge 1000 12,837 52 0 688.6
converge 5000 12,775 53 1 682.4
converge 10000 12,751 53 0 678.7
decay 1 12,698 48 1 673.6
decay 5 12,702 51 1 674.9
decay 10 12,698 48 1 674.2
decay 50 12,712 49 2 679.1
decay 100 12,726 46 1 678.8
decay 500 12,795 29 1 685.5
decay 1000 12,860 29 2 692.6
decay 5000 12,982 16 2 707.1
decay 10000 13,002 7 0 706.3
converge (combined) 13,167 117 41 -

—
-

decay (combined) 13,106 93

Table 4. Number of problems solved (top) and unique problems solved (bottom) by various configurations varying start/end AWR
values, AWR shape, and AWR frequency. Bold numbers indicate the best result within a given shape.

converge from 1:1

decay to 1:1

converge from 1:4

decay to 1:4

AWR |constant Frequency Frequency Frequency Frequency
1 10 100 1000 Union|1 10 100 1000 Union|l 10 100 1000 Union|1 10 100 1000 Union

Problems Solved

10:1 |7967 7972 7976 8050 8245 8372 |8448 8441 8380 8169 8614 |7983 7990 8094 8323 8485 |8579 8574 8493 8272 8797

1:10 |8575 8565 8578 8550 8489 8778 |8458 8456 8484 8268 8787 |8575 8584 8582 8535 8729 |8584 8574 8590 8608 8764

1:100 {8079 8084 8079 8039 8279 8560 |8454 8484 8537 8636 8907 (8088 8084 8071 8216 8399 (8572 8584 8615 8592 8855

1:1000|7276 7279 7297 7418 8133 8379 |8470 8492 8492 8473 8873 |7283 7300 7364 7927 8076 |8567 8567 8566 8446 8830

Union (9019 9028 9016 8981 8871 9194 8572 8674 8725 8978 9048 9038 9038 9016 8967 9180 |8697 8759 8800 8927 9026
Uniquely Solved

10:1 |1 2 1 1 6 10 0 0 0 2 2 1 0 0 1 2 0 0 2 4 6

1:10 |0 1 0 0 1 2 0 0 0 6 6 0 1 0 0 1 0 0 0 0 0

1:100 |1 0 0 5 4 9 2 0 3 3 8 0 0 0 2 2 0 1 1 0 2

1:1000(0 0 0 0 1 1 2 0 0 2 4 0 1 3 3 7 0 0 0 0 0

Union |2 3 1 6 12 22 4 0 3 18 20 1 2 3 6 12 0 1 3 4 8

Table 5. Total number of problems solved compared to other solvers.

Solver Total solved Uniquely solved
All Excluding Vampire (old)
Vampire (old) 13,057 0 -
Vampire (new) 13,191 54 1030
E 10,845 190 190
iProver 8,143 215 215
CvC4 9,354 501 502

purpose is to gauge what impact adding such options to a new portfolio mode
could have. In this experiment the aim was to find new solved problems and
identify new strategies that could be added to a portfolio mode. Therefore, it
makes sense to consider the union of all experiments.

Overall, the baseline solved the most problems (13,057). No experimental
configuration improved on this figure, but some problems not solved by baseline
were solved by the new configurations, and some entirely new problems were
solved. The union of all converge and decay configurations improved on the
baseline, with 13,167 and 13,106 solved problems respectively.

Figure 3 shows the performance in terms of solved problems of all the con-
figurations tested. These data show that configurations which select clauses in a
similar way to the baseline (i.e. slow decay or fast convergence) achieve similar
performance, as expected. In total, 134 (117 + 17, 934 41) problems were solved
by the new configurations that were not solved by the baseline. This is an im-
pressive result — it is rare to be able to improve portfolio mode by this many
new problems with a single new proof search option.

The u-score is computed by giving 1/n points per problem solved where
n is the number of strategies solving a problem [2]. This gives a measure of
contribution per strategy. Options with the largest w-score will be prioritised
for extending the existing portfolio mode, but only those with unique solutions
overall.

Finally, two problems were solved which were marked with an “Unknown”
status (with rating 1.00) in the TPTP headers. Only converging with frequency
50 solved SET345-6 and only decaying with frequency 1 solved LAT320+3.

5.3 Comparison with other Solvers

To place these results in context, the overall number of problems solved by our
new strategies are compared with the results of other solvers, using their CASC-
J9 These results are from 300-second runs in identical conditions and are given
in Table 5. In this table Vampire (old) stands for the CASC-J9 competition
version whilst Vampire (new) stands for the union of all problems solved by
new options in the previous section. Between them, the two versions of Vampire
solve 1,030 problems uniquely. 54 unique problems found in the previous section
remain unique when compared to other competitive solvers.

6 Conclusions and Future Work

Clause selection is a key part of any saturation-based theorem prover and age/weight
ratios have a significant effect on the performance of proof search in the Vampire
theorem prover. Known folklore that there is no clear optimal age/weight ratio is
supported. Further, varying the age/weight ratio over time during proof search
can improve further on an optimal, but fixed age/weight ratio in terms of the
number of activations. Experiments within Vampire on the TPTP benchmark
set suggest that these age/weight shapes show promise for future developments

in this novel approach to proof search. Indeed, including our relatively simple
shapes already leads to significant performance gains.

Future directions for research include trying a greater number of “shapes”
(such as repeating patterns), other approaches for parameterising these shapes,
a pseudo-random approach to age/weight instead of the balancing algorithm,
and integration of the new approaches into existing strategy schedules.

References

1. Jorg Denzinger, Martin Kronenburg, and Stephan Schulz. Discount-a distributed
and learning equational prover. Journal of Automated Reasoning, 18(2):189-198,
1997.

2. Krystof Hoder, Giles Reger, Martin Suda, and Andrei Voronkov. Selecting the
selection. In International Joint Conference on Automated Reasoning, pages 313—
329. Springer, 2016.

3. Konstantin Korovin. iProver—an instantiation-based theorem prover for first-order
logic (system description). In Armando, Baumgartner, and Dowek, editors, [JCAR
2008, volume 5195 of Lecture Notes in Computer Science, pages 292—298, 2008.

4. Laura Kovacs and Andrei Voronkov. First-order theorem proving and Vampire. In
International Conference on Computer Aided Verification, pages 1-35. Springer,
2013.

5. William McCune. Otter 2.0. In International Conference on Automated Deduction,
pages 663—-664. Springer, 1990.

6. William McCune. Otter 3.3 reference manual. arXiv preprint ¢s/0310056, 2003.

7. William McCune. Release of prover9. In Mile High Conference on Quasigroups,
Loops and Nonassociative Systems, Denver, Colorado, 2005.

8. Michael Rawson and Giles Reger. Dynamic strategy priority: Empower the strong
and abandon the weak. In Proceedings of the 6th Workshop on Practical Aspects
of Automated Reasoning co-located with Federated Logic Conference 2018 (FLoC
2018), Ozford, UK, July 19th, 2018., pages 58-71, 2018.

9. Giles Reger, Martin Suda, and Andrei Voronkov. Finding finite models in multi-
sorted first-order logic. In Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeauz, France, July 5-8, 2016, Proceed-
ings, pages 323-341, 2016.

10. Alexandre Riazanov and Andrei Voronkov. Limited resource strategy in resolution
theorem proving. 36(1-2):101-115, 2003.

11. Simon Schéfer and Stephan Schulz. Breeding theorem proving heuristics with
genetic algorithms. In Global Conference on Artificial Intelligence, GCAI 2015,
Tbilisi, Georgia, October 16-19, 2015, pages 263274, 2015.

12.
13.

14.

15.

16.

17.

Stephan Schulz. E — a brainiac theorem prover. 15(2-3):111-126, 2002.

Stephan Schulz and Martin Méhrmann. Performance of clause selection heuristics
for saturation-based theorem proving. In Automated Reasoning - 8th International
Joint Conference, IICAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Pro-
ceedings, pages 330-345, 2016.

Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: a cross-community
infrastructure for logic solving. In International joint conference on automated
reasoning, pages 367-373. Springer, 2014.

Geoff Sutcliffe. The 9th ijcar automated theorem proving system competition—
casc-j9. AT Communications, (Preprint):1-13, 2015.

Geoff Sutcliffe. The TPTP problem library and associated infrastructure, from
CNF to THO, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483-502,
2017.

Christoph Weidenbach. Combining superposition, sorts and splitting. In Robinson
and Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 27,
pages 1965-2013. Elsevier Science, 2001.

