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Abstract. Classically, in saturation-based proof systems, unification
has been considered atomic. However, it is also possible to move unifica-
tion to the calculus level, turning the steps of the unification algorithm
into inferences. For calculi that rely on unification procedures returning
large or even infinite sets of unifiers, integrating unification into the cal-
culus is an attractive method of dovetailing unification and inference.
This applies, for example, to AC-superposition and higher-order super-
position. We show that first-order superposition remains complete when
moving unification rules to the calculus level. We discuss some of the
benefits this has even for standard first-order superposition and provide
an experimental evaluation.

1 Introduction

Unification is a key feature in many proof calculi, particularly those based on
the saturation framework. It acts as a filter, reducing the number of inferences
that need to be carried out by instantiating terms only to the degree necessary.
However, many unification algorithms have large time complexities and produce
large, or even infinite, sets of unifiers. This is the case, for example, for AC-
unification, which can produce a doubly exponential number of unifiers [10], and
higher-order unification, which can produce an infinite set of unifiers [20]. This
motivates the study of how unification rules can be integrated into proof calculi
to allow them to dovetail with standard calculus rules. One way to achieve this
is to use the concept of unification with abstraction [17,13]. The general idea
is that during the unification process, instead of solving all unification pairs,
certain pairs are retained and added to the conclusion of an inference as negative
constraint literals. Calculus-level unification inferences then work on such literals
to solve these constraints and remove the literals in the case they are unifiable.
Note how this differs from constrained resolution-style calculi such as [4,15] where
the constraints are completely separate from the rest of the clause and are not
subject to inferences.

To demonstrate the idea of dedicated unification inferences in combination
with unification with abstraction, we provide the following example.

C1 = f(g(a, x)) 6≈ t C2 = f(g(a, b)) ≈ t
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A standard superposition calculus would proceed by unifying f(g(a, b)) and
f(g(a, x) with the unifier σ = {x→ b} and then rewriting C1 with C2 to derive
tσ 6≈ tσ. Equality resolution on tσ 6≈ tσ would then derive ⊥. It is also possible to
proceed by rewriting C1 with C2 without computing σ and instead add the con-
straint literal g(a, x) 6≈ g(a, b) to the conclusion to derive t 6≈ t∨ g(a, x) 6≈ g(a, b).
A dedicated unification inference could then decompose the constraint literal re-
sulting in t 6≈ t ∨ a 6≈ a ∨ b 6≈ x. Further unification inferences could bind x to
b, and remove the trivial pairs a 6≈ a and t 6≈ t to derive ⊥.

In this paper, we investigate moving unification to the calculus level for stan-
dard first-order superposition. Whilst this may seem like a regressive step, as we
lose much of unification’s power to act as a filter on inferences and hence produce
many more clauses, we think the investigation is valuable for two reasons.

Firstly, by showing how syntactic first-order unification can be lifted to the
calculus level, we provide a roadmap for how more complex unification problems
can be lifted to the calculus level. This may prove particularly useful in the
higher-order case, where abstraction may expose terms to standard calculus rules
that were unavailable before. Moreover, we note that in our calculus we do not
turn the entire unification problem into a constraint, but rather a subproblem.
Whilst this may be merely an interesting detail for first-order unification, for
more complex unification problems, such a method could be used to eagerly
solve simple unification subproblems whilst delaying complex subproblems by
adding them as constraints.

Secondly, one of the most expensive operations in first-order theorem provers
is the maintenance of indices. Indices are crucial to the performance of modern
solvers, as they facilitate the efficient retrieval of terms unifiable or matchable
with a query term. However, solvers typically spend a large amount of time
inserting and removing terms from indices as well as unifying against terms
in the indices. This is particularly the case in the presence of the AVATAR
architecture [24] wherein a change in the model can trigger the insertion and
removal of thousands of terms from various indices. By moving unification to
the calculus level, we can replace complex indices with simple hash maps, since
to trigger an inference we merely need to check for top symbol equality and not
unifiability. Insertion and deletion become O(1) time operations. However, for
first-order logic, we do not expect the time gained to offset the downsides of
extra inferences carried out and extra clauses created. Our experimental results
back up this hypothesis (see Section 7). Our main contributions are:

� Designing a modified superposition calculus that moves unification to the
calculus level (Section 3).

� Proving the calculus to be statically and dynamically refutationally complete
(Section 5).

� Providing a thorough empirical evaluation of the calculus (Section 7).



2 Preliminaries

Syntax We consider standard monomorphic first-order logic with equality. We
assume a signature consisting of a finite set of (monomorphically) typed function
symbols and a single predicate, equality, denoted by ≈. A non-equality atom
A can be expressed using equality as A ≈ > where > is a special function
symbol [18]. Terms are formed in the normal way from variables and function
symbols. We commonly use s, t or u or their primed variants to refer to terms.
We write s : τ to show that term s has type τ . A term is ground if it contains
no variables. We use the notation sn to refer to a tuple or list of terms of length
n. More generally, we use the over bar notation to refer to tuples and lists of
various objects. Where the length of the tuple or list is not relevant, we drop the
subscript. By si we denote the ith element of the tuple sn. Literals are positive
or negative equalities written as s ≈ t and s 6≈ t respectively. We use s ≈̇ t to
refer to either a positive or a negative equality. Clauses are multisets of literals.
A clause that contains no literals is known as the empty clause and denoted ⊥.

A substitution is a mapping from variables to terms. We assume, w.l.o.g.,
that all substitutions are idempotent. We commonly denote substitutions using
σ and θ and denote the application of a substitution σ to a term s by sσ.
A substitution θ is grounding for a term s, if sθ is ground. The definition of
grounding substitution can be extended to literals and clauses in the obvious
manner. A substitution σ is a unifier of terms s and t if sσ = tσ. A unifier σ is
more general than a unifier σ′ if there exists a substitution ρ such that σρ = σ′.
With respect to syntactic first-order unification, if two terms are unifiable then
they have a single most general unifier up to variable naming [1].

A transitive irreflexive relation over terms is known as an ordering. The
superposition calculus we present below is, as usual, parameterised by a simpli-
fication ordering on ground terms. An ordering � is a simplification ordering, if
it possesses the following properties. It is total on ground terms. It is compatible
with contexts, meaning that if s � t, then u[s] � u[t]. It is well-founded. Note
that every simplification ordering has the subterm property. Namely, that if t
is a proper subterm of s, then s � t. For non-ground terms, the only property
that is required of the ordering is that it is stable under substitution. That is, if
s � t then for all substitutions σ, sσ � tσ. We extend the ordering � to literals
in the standard fashion via its multiset extension. A positive literal s ≈ s′ is
treated as the multiset {s, s′}, whilst a negative literal s 6≈ s′ is treated as the
multiset {s, s, s′, s′}. The ordering is extended to clauses by its two-fold multiset
extension. We use � to denote the ordering on terms and its multiset extensions
to literals and clauses.

Semantics An interpretation is a pair (U, I), where U is a set of typed universes
and I is an interpretation function, such that for each function symbol f : τ1 ×
· · ·×τn → τ in the signature, I(f) is a concrete function of type Uτ1×· · ·×Uτn →
Uτ . A valuation ξ is a function that maps each variable x : τ to a member of
Uτ . For a given interpretation M and valuation ξ, we uses JtKξM to represent the
denotation of t in M given ξ. A positive literal s ≈ t is true in an interpretation



M for valuation ξ if JsKξM = JtKξM and false otherwise. A negative literal s 6≈ t
is true in an interpretation M for valuation ξ if s ≈ t is false. A clause C holds
in an interpretation M for valuation ξ if one of its literals is true in M for ξ.
An interpretation M models a clause C if C holds in M for every valuation. An
interpretation models a clause set, if it models every clause in the set. A set of
clauses M entails a set of clauses N , denoted M |= N , if every model of M is
also a model of N .

3 Calculus

Intuitively, what we are aiming for with our calculus, is that whenever standard
superposition applies a substitution σ to a conclusion with the side condition
“σ is a unifier of terms t1 and t2”, our calculus adds a constraint t1 6≈ t2 to the
conclusion. The calculus then has further inference rules that mimic the steps of a
first-order unification algorithm and work on negative literals. Our presentation
below does not quite follow this intuition. Instead, if the unification problem is
trivial we solve it immediately. If it is non-trivial, we carry out a single step of
unification and add the resulting sub-problems as constraints. Our reasons for
doing this are two-fold.

1. Adding the entire unification problem t1 6≈ t2 as a constraint can lead to a
constraint literal that is larger, with respect to �, than any literal occurring
in the premises. This causes difficulties in the completeness proof.

2. More pertinently, keeping in mind our planned applications to more complex
logics, we wish to show that delayed unification remains complete even when
only selected sub-problems of the original unification problem are added as
constraints. In the context of higher-order logic, for example, this could allow
for the eager solving of simple unification sub-problems whilst only the most
difficult are added as constraints. See Section 6 for further details.

Wherever we present a clause as a subclause C ′ and a literal l (e.g. C ′∨ l), we
denote the entire clause by the same name as the subclause without the dash (e.g.
we refer to the clause C ′ ∨ l by C). As in the classical superposition calculus,
our calculus is parameterised by a selection function that is used to restrict
the number of applicable inferences in order to avoid the search space growing
unnecessarily. A selection function sel is a function that maps a clause to a subset
of its negative literals. We say that literal l is σ-eligible in a clause C ′ ∨ l if it is
selected in C (l ∈ sel(C)), or there are no selected literals and lσ is maximal in
Cσ. Strict σ-eligibility is defined in a like fashion, with maximality replaced by
strict maximality. Where σ is empty, we sometimes speak of eligibility instead
of σ-eligibility. In what follows, CS is a multiset of literals that we refer to as
constraints.

D′ ∨ f(tn) ≈ t′ C ′ ∨ s[f(sn)] ≈̇ s′
Sup

C ′ ∨D′ ∨ s[t′] ≈̇ s′ ∨ CS



D′ ∨ x ≈ t′ C ′ ∨ s[f(sn)] ≈̇ s′
VSup

(C ′ ∨D′ ∨ s[t′] ≈̇ s′)σ

where σ = {x → f(sn)}, and CS = t1 6≈ s1 ∨ . . . ∨ tn 6≈ sn. Both rules share
the following side conditions. Let t stand for either f(tn) or x. For Sup, the
substitution σ mentioned in the side conditions is of course empty.

� t ≈ t′ is strictly σ-eligible.
� s[f(sn)] ≈̇ s′ is strictly σ-eligible if positive and σ-eligible if negative.
� tσ 6� t′σ and s[f(sn)]σ 6� s′σ.
� Cσ 6� Dσ

C ′ ∨ f(tn) ≈ v′ ∨ f(sn) ≈ v EqFact
C ′ ∨ v 6≈ v′ ∨ f(sn) ≈ v ∨ CS

C ′ ∨ u′ ≈ v′ ∨ u ≈ v VEqFact
(C ′ ∨ v 6≈ v′ ∨ u ≈ v)σ

for EqFact, CS = t1 6≈ s1 ∨ . . . ∨ tn 6≈ sn. For VEqFact, either u or u′ must
be a variable and σ is the most general unifier of u and u′. The side conditions
for EqFact are:

� f(sn) ≈ v be eligible in C.
� f(sn) 6� v and f(tn) 6� v′.

The side conditions for VEqFact are:

� u ≈ v be σ-eligible in C.
� uσ 6� vσ and u′σ 6� v′σ.

The calculus also contains the following resolution / unification inferences.
We refer to these as unification inferences, because each inference represents
carrying out a single step of the well-known Robinson unification algorithm [11].

C ′ ∨ f(sn) 6≈ f(tn)
Decompose

C ′ ∨ CS
C ′ ∨ x 6≈ t

Bind
C ′σ

C ′ ∨ s 6≈ s
ReflDel

C ′

where for Bind, σ = {x → t} and x does not occur in t. For Decompose,
f(sn) 6= f(tn) and CS = t1 6≈ s1 ∨ . . .∨ tn 6≈ sn. All three inferences require that
the final literal be σ-eligible in Cσ (for Decompose and ReflDel, σ is empty).
We provide some examples to show how the calculus works.

Example 1. Consider the unsatisfiable clause set:

C1 = f(x, g(x)) 6≈ t C2 = f(g(b), y) ≈ t

A Sup inference between C1 and C2 results in clause C3 = t 6≈ t ∨ x 6≈
g(b) ∨ g(x) 6≈ y. A ReflDel inference on C3 results in the clause C4 = x 6≈
g(b) ∨ g(x) 6≈ y. An application of Bind on C4 with σ = {x → g(b)} results in
C5 = g(g(b)) 6≈ y. Another application of Bind, then leads to ⊥.



Example 2. Consider the unsatisfiable clause set:

C1 = x ≈ c C2 = f(a, c) 6≈ t C3 = f(c, c) ≈ t

A VSup inference between C1 and C2 results in clause C4 = f(c, c) 6≈ t. A
Sup inference between C3 and C4 results in the clause C5 = t 6≈ t∨c 6≈ c∨c 6≈ c.
A triple application of ReflDel starting from C5 derives ⊥.

Note 1. We abuse terminology and use inference and inference rule to refer both
to schemas such as shown above, as well as concrete instances of such schemas.
Given an inference ι, we refer to the tuple of its premises by prems(ι), to its
maximal premise by mprem(ι), and to its conclusion by concl(ι).

4 Redundancy Criterion

We utilise Waldmann et al.’s framework [25] for proving the completeness of
our calculus. Hence, our redundancy criterion is based on their intersected lifted
criterion. In instantiating the framework, we roughly follow Bentkamp et al. [6].
Let the calculus defined above be referred to as Inf . We introduce a ground
inference system GInf that coincides with standard superposition [3]. That is,
it contains the well known three inferences, Sup, EqFact and EqRes. We refer
to these inferences by GSup, GEqFact and GEqRes to indicate that they are
only applied to ground clauses. Following the notation of the framework, we write
Inf (N) (GInf (N)) to denote the set of all Inf (GInf ) inferences with premises
in a clause set N . We introduce a grounding function G that maps terms, literals
and clauses to the sets of their ground instances. For example, given a clause C,
G(C) is the set {Cθ | θ is a grounding substitution}. We extend the function G
to clause sets by letting G(N) =

⋃
C∈N G(C) where N is a set of clauses.

A ground clause C is redundant with respect to a set of ground clauses N
if there are clauses C1, . . . , Cn ∈ N such that for 1 ≤ i ≤ n, Ci ≺ C and
C1, . . . , Cn |= C. The set of all ground clauses redundant with respect to a set
of ground clauses N is denoted GRedCl(N).

A clause C is redundant with respect to a set of clauses N , if for every
D ∈ G(C), D is redundant with respect to G(N) or there is a clause C ′ ∈ N
such that D ∈ G(C ′) and C A C ′ where A is the strict subsumption relation.
That is C A C ′ if C is subsumed by C ′, but C ′ is not subsumed by C. The set
of all clauses redundant with respect a set of clauses N is denoted RedCl(N).

In order to define redundant inferences, we have to pay careful attention to
selection functions. For non-ground clauses, we fix a selection function sel. We
then let G(sel) be a set of selection functions on ground clauses with the following
property. For each gsel ∈ G(sel), for every ground clause C, there exists a clause
D such that C ∈ G(D) and the literals selected in C by gsel correspond to those
selected in D by sel . We write GInf gsel to show that the ground inference system
GInf is parameterised by the selection function gsel . Let ι be an inference in Inf .
We extend the grounding function G to a family of grounding functions Ggsel



for each gsel ∈ G(sel). Each function Ggsel maps terms, literals and clauses as
above, and maps members of Inf to subsets of GInf gsel as follows.3

Definition 1 (Ground Instance of an Inference). Let ι be of the form
C1, . . . , Cn ` E ∨ CS . An inference ιg ∈ GInf gsel is in Ggsel(ι) if it is of the
form C1θ, . . . , Cnθ ` Eθ for some grounding substitution θ. In this case, we say
that ιg is the θ-ground instance of ι. Note that we ignore the constraints in the
definition of ground instances.

A ground inference C1, . . . , Cn, C ` E with maximal premise C is redundant
with respect to a clause set N if for 1 ≤ i ≤ n, Ci ∈ GRedCl(N) or C ∈
GRedCl(N) or there exist clauses D1, . . . Dm ∈ N such that for 1 ≤ i ≤ m,
Di ≺ C and D1, . . . , Dm |= E. The set of all ground inferences redundant with
respect to a set N is denoted GRedgsel

I (N).
An inference ι is redundant with respect to a clause set N if for every gsel ∈

G(sel) and for every ι′ ∈ Ggsel(ι), ι′ ∈ GRedgsel
I (G(N)). In words, every ground

instance of the inference is redundant with respect to G(N). We denote the set
of all redundant inferences with respect to a set N as RedI(N).

A clause set N is saturated up to redundancy by an inference system Inf if
every member of Inf (N) is redundant with respect to N .

Note 2. Given the definition of clause redundancy above, the ReflDel infer-
ence can be utilised as a simplification inference. That is, the conclusion of the
inference renders the premise redundant.

5 Refutational Completeness

To prove refutational completeness we utilise the above mentioned framework of
Waldmann et al. [25]. In particular, we use Theorem 14 from the paper to lift
completeness from the ground level to the non-ground level. We bring Theorem
14 here for clarity and to keep the paper self contained. We then present it in
our notation. Let GRed = (GRedgsel

I ,GRedCl) and Red = (RedI ,RedCl)

Theorem 14 (from Waldmann et al. [25]). If (GInf q ,Redq) is statically
refutationally complete w.r.t. |=q for every q ∈ Q and if for every N ⊆ F that
is saturated w.r.t. FInf and Red∩G there exists a q such that GInf q(Gq(N)) ⊆
Gq(FInf (N))∪Redq

I (Gq(N)), then (FInf ,Red∩G ) is statically refutationally com-
plete w.r.t. |=∩G .

Theorem 14 (fromWaldmann et al. in our Notation). If (GInf gsel ,GRed)
is statically refutationally complete w.r.t. |= for every gsel ∈ G(sel) and if for
every clause set N that is saturated w.r.t. Inf and Red there exists a gsel such
that GInf gsel(Ggsel(N)) ⊆ Ggsel(Inf (N)) ∪ RedI(Ggsel(N)), then (Inf ,Red) is
statically refutationally complete w.r.t. |=G .
3 When a grounding function Ggsel acts on a clause, literal or term, we commonly
drop the gsel superscript as the selection function plays no role in the grounding of
these.



Thus, in our context, the set Q is G(sel), the ground inference system GInf q

maps to GInf gsel , the ground redundancy criterion Redq is (GRedgsel
I ,GRedCl)

and the ground entailment relation |=q maps to standard entailment on first-
order clauses. Moreover, the non-ground inference system FInf maps to Inf and
the redundancy criterion Red∩G maps to (RedI ,RedCl). Note, that this final
mapping is not exact, as the criterion Red∩G does not allow for a tiebreaker
ordering, such as the strict subsumption relation, to be utilised in the definition
of non-ground redundancy. However, this mismatch can easily be repaired since
Theorem 16 of the framework paper extends the result of Theorem 14 to the
case where tiebreaker orderings are used.

As our ground inference systems GInf gsel are ground superposition systems,
static refutational completeness with respect to standard entailment and stan-
dard redundancy is a famous result. See for example [2]. What remains for us to
prove in order to apply Theorem 14 and show the static refutational complete-
ness of Inf , is:

1. For every gsel ∈ G(sel), the grounding function Ggsel is a grounding function
in the sense of the framework.

2. For every clause set N saturated up to redundancy by Inf , there exists a
gsel ∈ G(sel) such that GInf gsel (G(N)) ⊆ Ggsel(Inf (N))∪GRedgsel

I (G(N)).
In words, there exists a ground selection function such that every ground
inference with that selection function and premises in G(N) is either the
instance of a non-ground inferences with premises in N or is redundant with
respect to G(N).

Lemma 1. For every gsel ∈ G(sel), the grounding function Ggsel is a grounding
function in the sense of the framework.

Proof. We need show that properties (G1) – (G3) defined by Waldmann et al.
hold for grounding functions. These properties are:

(G1) for every ⊥ ∈ F⊥, ∅ 6= G(⊥) ⊆ G⊥;
(G2) for every C ∈ F, if ⊥ ∈ G(C) and ⊥ ∈ (G)⊥ then C ∈ F⊥;
(G3) for every ι ∈ FInf , if G(ι) 6= undef , then G(ι) ⊆ RedI(G(concl(ι))).

As properties (G1) and (G2) relate to the grounding of terms and clauses,
and our grounding of these is fully standard we skip these. We prove (G3),
which in our terminology is: for every ι ∈ Inf , Ggsel(ι) ⊆ GRedgsel

I (G(concl(ι))).
This can be achieved by showing that for every ι′ ∈ Ggsel(ι), there exist clauses
C ∈ G(concl(ι)) such that C |= concl(ι′) and for each Ci ∈ C, Ci ≺ mprem(ι′).
In what follows, let θ be the substitution by which ι′ is a grounding of ι.

If CS is the empty set in concl(ι), then concl(ι)θ = concl(ι′) and hence
concl(ι)θ |= concl(ι′). Moreover, concl(ι)θ ∈ G(concl(ι)) and thus concl(ι)θ ≺
mprem(ι′).

On the other hand, if CS is not empty, let u = f(tn) and u′ = f(sn) be the two
terms within prems(ι) from which the constraints are created. By the existence
of ι′, we have that uθ = u′θ, and hence that tiθ = siθ for 1 ≤ i ≤ n. Hence, every



literal in CSθ has the form t 6≈ t and is trivially false in every interpretation.
Thus, we still have concl(ι)θ |= concl(ι′). Moreover, by the subterm property of
the ordering � we have that tiθ 6≈ siθ is smaller than the maximal / selected
literal of mprem(ι′) for 1 ≤ i ≤ n and hence that concl(ι)θ ≺ mprem(ι′). ut

Lemma 2. let σ be the most general unifier of terms s and s′, and θ be any
unifier of the same terms. Then for any term t, (tσ)θ = tθ.

Proof. Since σ is the most general unifier, there must be a substitution ρ such
that σρ = θ. Hence (tσ)θ = (tσ)σρ = tσρ = tθ where the second to last step
follows from the fact that σ is idempotent. ut

Lemma 3. For every clause set N saturated by Inf , there exists a gsel ∈ G(sel)

such that GInf gsel (G(N)) ⊆ Ggsel(Inf (N)) ∪GRedgsel
I (G(N)).

Proof. For every D ∈ G(N) there must exist a clause C ∈ N such that D ∈
G(C). Let � be an arbitrary well-founded ordering on clauses. We let C =
G−1(D) denote the �-smallest clause such that D ∈ G(C). We then choose the
gsel ∈ G(sel) that for a clause D ∈ G(N) selects the corresponding literals to
those selected by sel in G−1(D). Given this gsel , we need to show that every
inference with premises in G(N) is either the ground instance of an inference
with premises in N , or is redundant with respect to G(N).

A Sup inference is redundant if the term t replaced in the second premise
occurs at or below a variable. The proof is exactly the same as in the standard
proof of the completeness of superposition [3], so we don’t repeat it. All other
inferences can be shown to be the ground instance of inferences from clauses in
N .

Let ι ∈ GInf gsel be the following GSup inference with premises in G(N).

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈̇ s′θ
C ′θ ∨D′θ ∨ sθ[t′θ] ≈̇ s′θ

where G−1(Dθ) = D = D′ ∨ t ≈ t′, G−1(Cθ) = C = C ′ ∨ s ≈̇ s′ and ι fulfils
all the side conditions of GSup. Let σ be any substitution. The literal tθ ≈ t′θ
being strictly maximal in Dθ implies that tσ ≈ t′σ is strictly maximal in Dσ due
to the stability under substitution of �. The literal sθ[tθ] ≈̇ s′θ being (strictly)
eligible in Cθ with respect to gsel implies that sσ ≈ s′σ is strictly eligible in
Cσ with respect to sel . Let p be the position of tθ within sθ and let u be the
subterm of s at p. Since the term tθ does not occur below a variable of C, such
a position must exist. Moreover, u cannot be a variable since if it was tθ would
occur at a variable of C. As θ is a unifier of u and t, it must be the case that
either t is a variable, or u and t have the same top symbol. Further, Dθ ≺ Cθ
implies that Cσ 6� Dσ, tθ � t′θ implies that tσ 6� t′σ, and sθ[t′θ] � s′θ implies
sσ 6� s′σ. Thus, if t is not a variable, there exists the following Sup inference ι′
from clauses D and C.

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈̇ s′

C ′ ∨ D′ ∨ s[t′] ≈̇ s′ ∨ CS



We have that (C ′ ∨ D′ ∨ s[t′] ≈̇ s′)θ = concl(ι). That is, the grounding of the
conclusion of ι′ less the constraint literals is equal to the conclusion of ι. Thus, ι
is the θ-ground instance of ι′ as per Definition 1 . If t is a variable x, then there
exists the following VSup inference ι′ from clauses D and C.

D′ ∨ x ≈ t′ C ′ ∨ s[u] ≈̇ s′

(C ′ ∨ D′ ∨ s[t′] ≈̇ s′)σ

Where σ = {x→ u} is the most general unifier of t and u. Thus, we can use
Lemma 2 to show that concl(ι′)θ = concl(ι) and again ι is the θ-ground instance
of ι′.

Let ι ∈ GInf gsel be the following GEqFact inference with premise in G(N).

C ′θ ∨ u′θ ≈ v′θ ∨ uθ ≈ vθ
C ′θ ∨ vθ 6≈ v′θ ∨ uθ ≈ vθ

where u′θ = uθ, G−1(Cθ) = C = C ′ ∨ u′ ≈ v′ ∨ u ≈ v and ι fulfils all the side
conditions of GEqFact. Let σ be any substitution. The literal uθ ≈ vθ being
maximal in Dθ implies that uσ ≈ vσ is maximal in Dσ. Since θ is a unifier of u′
and u, at least one of them must be a variable, or they must share a top symbol.
Moreover, uθ � vθ implies that uσ 6� vσ and u′θ � v′θ implies that u′σ 6� v′σ.
If neither u nor u′ is a variable, there exists the following EqFact inference ι′
from C.

C ′ ∨ u′ ≈ v′ ∨ u ≈ v
C ′ ∨ v 6≈ v′ ∨ u ≈ v ∨ CS

We have (C ′ ∨ v 6≈ v′ ∨ u ≈ v)θ = concl(ι), making ι the θ-ground instance
of ι′ as per Definition 1. If either u of ′u is a variable there exists the following
VEqFact inference ι′ from C.

C ′ ∨ u′ ≈ v′ ∨ u ≈ v
(C ′ ∨ v 6≈ v′ ∨ u ≈ v)σ

Where σ is the most general unifier of u and u′. Thus, we can use Lemma
2 to show that concl(ι′)θ = concl(ι). Finally, let ι ∈ GInf gsel be the following
GEqRes inference with premise in G(N).

C ′θ ∨ sθ 6≈ s′θ
C ′θ

where sθ = s′θ, G−1(Cθ) = C = C ′ ∨ s 6≈ s′ and ι fulfils all the side
conditions of GEqRes. Let σ be any substitution. The literal sθ 6≈ s′θ being
eligible with respect to gsel in Cθ implies that s 6≈ s′ is eligible in C with respect
to sel . Since θ is a unifier of s and s′, at least one of them must be a variable, or
they must share a top symbol. If s = s′, then there exists the following ReflDel
inference ι′ from C.



C ′ ∨ s 6≈ s
C ′

Otherwise we have two options. If either s (or analogously s′) is a variable,
then there is the following Bind inference ι′ from C.

C ′ ∨ x 6≈ s′

C ′σ

Otherwise s and s′ must share a top symbol and there is the following De-
compose inference ι′ from C.

C ′ ∨ f(sn) 6≈ f(tn)
C ′ ∨ CS

In the first case, we have concl(ι′)θ = concl(ι). In the second case, σ is
the most general unifier of s and s′, so we can use Lemma 2 to show that
concl(ι′)θ = concl(ι). In the last case, we have that C ′θ = concl(ι). Thus in all
cases, ι is the θ-ground instance of ι′. ut

Using Lemmas 1 and 3 we can instantiate Theorem 14 to prove the static
refutational completeness of Inf . There is a slight issue here, as Theorem 14
gives us refutational completeness with respect to Herbrand entailment. That is
N |=M if G(N) |= G(M). We would like to prove completeness with respect to
entailment as defined in Section 2 (known as Tarski entailment). This issue can
easily be resolved by showing that the two concepts are equivalent with regards
to refutations which can be achieved in a manner similar to Bentkamp et al.
(Lemma 4.19 of [6]).

Theorem 1 (Static refutational completeness). For a set of clauses N
saturated up to redundancy by Inf , N |= ⊥ if and only if ⊥ ∈ N .

Theorem 17 of Waldmann et al.’s framework can be used to derive dynamic
refutational completeness from static refutational completeness. We refer readers
to the framework for the formal definition of dynamic refutational completeness.

Theorem 2 (Dynamic refutational completeness). The inference system
Inf is dynamically refutationally complete with respect to the redundancy crite-
rion (RedI ,RedCl).

6 Extending to Higher-Order Logic

We sketch how the ideas above can be extended to higher-order logic. This is on-
going research, and many of the technical details have yet to be fully worked out.
Here, we provide a (very) informal description and then provide examples. The
higher-order unification problem is undecidable and there can exist a potentially
infinite number of incomparable most general unifiers for a pair of terms [12].
Existing higher-order paramodulation style calculi deal with this issue in two



main ways. One method is to abandon completeness and only unify to some pre-
defined depth [22]. Another approach is to produce potentially infinite streams of
unifiers and interleave the fetching of items from such streams with the standard
saturation procedure[7]. Our idea is to solve easy sub-problems eagerly, such as
when terms are first-order or in the pattern fragment [16], and add harder sub-
problems as constraints. We then utilise dedicated inferences on negative literals
to mimic the rules of Huet’s well known (pre-)unification procedure [12]. We
think that inferences similar to the following two, could be sufficient to achieve
refutational completeness.

C ′ ∨ x sn 6≈ f tm
Imitate

(C ′ ∨ x sn 6≈ f tm){x→ λyn. f (z1 yn) . . . (zm yn)}

C ′ ∨ x sn 6≈ f tm
Project

(C ′ ∨ x sn 6≈ f tm){x→ λyn. yi (z1 yn) . . . (zp yn)}

In both rules, each zi is a fresh variable of the relevant type, and x sn 6≈ f tm is
selected in C. Project has k ≤ n conclusions, one for each yi of suitable type.
We hope that through a careful definition of the selection function, along with
the use of purification, we can avoid the need to apply unification inferences
to flex-flex literals (negative literals where both sides of the equality have vari-
able heads). Moreover, we are hopeful that the calculus we propose can remain
complete without the need for inferences that carry out superposition beneath
variables such as the FluidSup rule of λ-superpostion [7] and the SubVarSup
rule of combinatory-superposition [9].

Example 3. Consider the unsatisfiable clause set:

C1 = f y (x a) (x b) 6≈ t C2 = f c a b ≈ t

A Sup inference between C1 and C2 results in clause C3 = tσ 6≈ tσ ∨ x a 6≈
a ∨ x b 6≈ b where σ = {y → c}. Assume that the literal x a is selected in C3.
We can carry out either a Project step on this literal or an Imitate step. The
result of a project step is C4 = (tσ 6≈ tσ ∨ (λz. z) a 6≈ a ∨ x b 6≈ b){x → λz. z}.
Applying the substitution and β-reducing results in C5 = tσ 6≈ tσ∨a 6≈ a∨b 6≈ b
from which it is easy to reach a contradiction.

Example 4 (Example 1 of Bentkamp et al. [7]). Consider the unsatisfiable clause
set:

C1 = f a ≈ c C2 = h (y b) (y a) 6≈ h (g (f b)) (g c)

An EqRes inference on C2 results in C3 = y b 6≈ g (f b) ∨ y a 6≈ g c. An Imitate
inference on the first literal of C3 followed by the application of the substitution
and some β-reduction results in C4 = g (z b) 6≈ g (f b) ∨ g (z a) 6≈ g c. A further
double application of EqRes gives us C5 = z b 6≈ f b ∨ z a 6≈ c. We again
carry out Imitate on the first literal followed by an EqRes to leave us with



C6 = x b 6≈ b ∨ f (x a) 6≈ c. We can now carry out a Sup inference between C1

and C6 resulting in C7 = x b 6≈ b ∨ c 6≈ c ∨ x a 6≈ a from which it is simple to
derive ⊥ via an application of Imitate on either the first or the third literal.
Note, that the empty clause was derived without the need for an inference that
simulates superposition underneath variables, unlike in [7].

Example 5 (Example 2 of Bentkamp et al. [7]). Consider the unsatisfiable clause
set:

C1 = f a ≈ c C2 = h (y (λx. g (f x)) a) y 6≈ h (g c) (λw x.w x)

An EqRes inference on C2 results in C3 = y (λx. g (f x)) a 6≈ g c∨y 6≈ λw x.w x.
Assuming that the second literal is selected,4 an EqRes inference results in
C4 = (y (λx. g (f x)) a 6≈ g c){y → λw x.w x}. Simplifying C4 via applying the
substitution and β-reducing, we achieve g (f a) 6≈ g c. Superposing C1 onto this
clause we end up with C5 = g c 6≈ g c from which the empty clause can easily be
derived. Note again, that the empty clause has been derived without recourse to
a FluidSup-like inference.

7 Experimental Results

We implemented the calculus in the Vampire theorem prover [14]. We also imple-
mented a variant of the calculus, that utilises fingerprint indices [19] to act as an
imperfect filter. The completeness proof indicates that a superposition inference
only needs to be carried out when the two terms can possibly unify. Therefore,
we store terms in fingerprint indices, which act as fast imperfect filters for find-
ing unification partners, and only carry out superposition inferences with terms
returned by the index. This restricts, somewhat, the number of inferences that
take place, at the expense of some loss of speed. Thus, it represents a midway
path between eager unification and delayed unification. As a final twist, we im-
plemented a version of the calculus that uses fingerprint indices as well as solving
constraint literals of the form x 6≈ t (where x is not a subterm of t) and t 6≈ t
eagerly. Thus, in this version of the calculus there is no need for the Bind and
ReflDel rules.

We compared each of these approaches with the standard superposition cal-
culus implemented in Vampire. We refer to the standard calculus as Vampire
and the delayed inference calculus without fingerprint indices by Vampire*. 5

We refer to the delayed inference calculus with fingerprint indices by Vampire†.

4 Most orderings would select the first literal. In this case, we can still derive a con-
tradiction, but the proof is longer.

5 Our implementation can be found at https://github.com/vprover/vampire/tree/
delayed-unification. To run the new calculus, use option -duc on. To run the
standard calculus, the option duc is set to off.

https://github.com/vprover/vampire/tree/delayed-unification
https://github.com/vprover/vampire/tree/delayed-unification


Finally, we refer to the calculus that eagerly solves some constraint literals by
Vampire‡.6

We tested these approaches against each other on benchmarks coming from
CASC 2023 system competition [23]. As our new approach is not currently com-
patible with higher-order or polymorphic input, we restricted the comparison to
monomorphic first-order problems. Namely, we used the 500 benchmarks in the
FNE and FEQ categories. These are monomorphic, first-order benchmarks that
either include equality (FEQ) or do not contain equality (FNE). All benchmarks
in the set are theorems. The results can be seen in Table 1. All experiments were
run on a node cluster located at The University of Manchester. Each node in the
cluster is equipped with 192 gigabytes of RAM and 32 Intel® Xeon processors
with two threads per core. Each configuration was given 100s of CPU time per
problem and run in single core mode. Vampire was run with options --mode
casc which causes it to use a tuned portfolio of strategies. All other variants
were run with options --mode casc --forced_options duc=on which forces
the use of the new calculus on top of the aforementioned portfolio.

Approach Solved Uniques
Vampire 430 110
Vampire* 238 0
Vampire† 255 0
Vampire‡ 322 2
Table 1: Summary of experimental results

The calculi based on delayed unification perform badly in comparison to
standard superposition. This is unsurprising, as syntactic first-order unification is
already an efficient process. By replacing it with delayed unification, we gain little
in terms of time, but pay a heavy penalty in terms of the number of inferences
carried out. The use of fingerprint indices helps somewhat in mitigating this issue,
but not a great deal. Eagerly solving trivial constraints shows more promise and
is actually able to solve two problems that the standard calculus can not (within
the time limit). These are the benchmarks CSR036+3.p and LAT347+3.p.

8 Related Work

The only other proof calculi that we are aware of that explicitly integrate unifica-
tion rules at the calculus level, are the higher-order paramodulation calculi [8,22]

6 The code for both Vampire† and Vampire‡ can be found at branch
https://github.com/vprover/vampire/tree/delayed-unif-with-fp. Vampire†

was built from commit c04a08feb5db3e7468a1fa and Vampire‡ from commit
fa2f139302b6a7a6487e73. Again, option -duc on is required for the new calculi
to run.

https://github.com/vprover/vampire/tree/delayed-unif-with-fp


and lazy paramodulation [21]. However, these calculi are paramodulation calculi
and do not incorporate certain concepts of redundancy so crucial to the success
of superposition provers. Moreover, the completeness proofs for these calculi are
based on very different techniques to the Bachmair & Ganzinger style model
building proofs commonly employed in the completeness proofs of superposition
calculi.

There are other calculi that in some form do represent the folding of unifica-
tion into the calculus, but the link between the unification rules and the calculus
is less clear. For example, the recent work by one of the authors of this paper [13]
relating to reasoning about linear arithmetic, moves theory reasoning relating
to a number of equations from the unification algorithm to the calculus level.
A different example, by another of this paper, is the combinatory-superposition
calculus [9] which essentially folds higher-order combinatory unification into the
calculus. In both cases, the relationship between the unification algorithm and
the calculus rules is not obvious.

There are other methods of dovetailing unification with inference rules. For
example, a unification procedure can be modified to return a stream of results.
This stream can be interrupted in order to carry out further inferences and then
returned to later. This is the approach taken by the higher-order Zipperposition
prover [7] in order to handle the infinite sets of unifiers returned by higher-order
unification. Conceptually, this is a very different solution to using constraints,
since the intermediate terms created during unification are not available to the
entire calculus as they are in our approach. Furthermore, from an implementa-
tion perspective, streams of unifiers are a far greater departure from the stan-
dard saturation architecture than the adding of constraints. Unification can also
be partially delayed by preprocessing techniques such as Brand’s modification
method and its developments [5].

As mentioned in the introduction, abstraction resembles the basic strategy
[4,15], where unification problems are added to the constraint part of a clause.
Periodically, these constraints can be checked for satisfiability and clauses with
unsatisfiable constraints removed. However, in the basic strategy, the constraints
do not interact with the rest of the proof calculus. Moreover, redundancy of
clauses can no longer be defined in terms of ground instances, but only in terms
of ground instances that satisfy the constraints. This significantly affects the
simplification machinery of superposition / resolution.

Unification with abstraction was first introduced, to the best of our knowl-
edge, by Reger et al. in [17] in the context of theory reasoning. However, the
concept was introduced in an ad-hoc fashion with no theoretical analysis of
its impact on the completeness of the underlying calculus. Recently, the rela-
tionship between unification modulo an equational theory and unification with
abstraction has been analysed [13] and a framework developed linking the two.
It remains to explore whether the current work can fit into that framework.



9 Conclusion

We have developed a first-order superposition calculus that delays unification
through the use of constraints, and proved its completeness. Whilst the calculus
does not perform well in practice, we feel that the calculus and its completeness
proof form a template that can be followed to prove the completeness of calculi
that involve unification procedures more complex than syntactic first-order unifi-
cation. For example unification modulo a set of equations E. Some of the crucial
features of our approach are: (1) the carrying out of partial unification and
adding the remaining unification pairs back as constraints, and (2) the ignoring
of constraint literals in the definition of redundant inference. In particular, fea-
ture (1) may well be crucial in taming issues relating to undecidable unification
problems. For example, in higher-order logic where unification is undecidable, it
is common to run unification to a particular depth and then give up if termina-
tion has not occurred. Of course, this harms completeness. With our approach it
should be possible to add the remaining unification pairs back as constraints and
maintain completeness. In the future, we would like to generalise our approach
into a framework that can be used to prove the completeness of a variety of
calculi as long as the unification problem for the underlying terms meets certain
conditions. We would also like to explore instantiating such a framework to prove
the completeness of particular calculi of interest to us such as AC-superposition
and higher-order superposition.
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