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Abstract. Subsumption resolution is an expensive but highly effec-
tive simplifying inference for first-order saturation theorem provers. We
present a new SAT-based reasoning technique for subsumption resolu-
tion, without requiring radical changes to the underlying saturation al-
gorithm. We implemented our work in the theorem prover Vampire, and
show that it is noticeably faster than the state of the art.

1 Introduction

Saturation-based proof search is a popular approach to first-order theorem prov-
ing [6,14,18]. In addition to efficient inference systems [8,1], saturation provers
also implement redundancy elimination to reduce the size of the search space. Re-
dundancy elimination deletes clauses from the search space by showing them to
be logical consequences of other (smaller) clauses, and therefore redundant. How-
ever, checking whether a first-order formula is implied by another first-order for-
mula is undecidable, and so eliminating redundant clauses is in general undecid-
able too. In practice, saturation systems apply cheaper conditions for redundancy
elimination, such as removing equational tautologies by congruence closure or
deleting subsumed clauses by establishing multiset inclusion. Recently, SAT solv-
ing has been applied to efficiently detect and remove subsumed clauses [10]. We
extend SAT-based reasoning in first-order theorem proving to a combination of
subsumption and resolution, subsumption resolution [2] (Section 4).

Both subsumption and subsumption resolution are NP-complete [4]. To im-
prove efficiency in practice, we (i) encode subsumption resolution as SAT for-
mulas over (match) set constraints (Section 5) and (ii) directly integrate CDCL
SAT solving for checking subsumption resolution in first-order theorem proving
(Section 6). We implement our approach in the theorem prover Vampire [6],
improving the state-of-the-art in first-order reasoning (Section 7).

Related Work. Subsumption and subsumption resolution are some of the most
powerful and frequently used redundancy criteria in saturation-based provers.
Subsumption resolution is supported as contextual literal cutting in [14], along
with efficient approaches for detecting multiset inclusions among clauses [6,18,13].
Special cases of unit deletion as a by-product of subsumption tests are also
proposed in [16]. Much attention has been given to refinements of term index-
ing [16,13] to drastically reduce the set of candidate clauses checked for subsump-
tion. Recently, these approaches have been complemented by SAT solving [10],
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reducing subsumption checking to SAT. Our work generalises this approach by
solving for both subsumption and subsumption resolution via SAT.

SAT solvers have been applied widely to first-order theorem proving, in-
cluding but not limited to AVATAR [17], instance-based methods [5], heuristic
grounding [14], global subsumption [12] and combinations thereof [11], but using
SAT solvers for classical subsumption methods is under-explored. To the best
of our knowledge, SAT solving for subsumption resolution has so far not been
addressed in the landscape of automated reasoning.

2 Illustrative Examples and Main Contributions

Let us illustrate a few challenges of subsumption resolution, which motivate our
approach to solving it (Section 4). Given a pair of clauses L and M , denoted
as (L,M), the problem is to decide whether M can be simplified by L via a
special case of logical consequence. In Figure 1 we show examples where it is not
obvious for which pairs (Li,Mi) subsumption resolution can be applied.

L1 := p(x1, x2) ∨ p(f(x2), x3)

M1 := p(g(y1), c) ∨ ¬p(f(c), e)

L2 := p(x1) ∨ q(x2)

M2 := ¬p(y) ∨ ¬q(c)

L3 := p(x1) ∨ q(x1, x2) ∨ ¬p(x2)

M3 := ¬p(y) ∨ q(y, y)

L4 := p(x1) ∨ q(x2) ∨ r(x3)

M4 := ¬p(y1) ∨ q(c)

Fig. 1: Illustrative examples.

In fact, subsumption resolution can only be applied to (L1,M1). Later, we
show how our approach determines that M1 can be shortened in the presence of
L1 (Example 3.1), but also how the remaining pairs cannot apply subsumption
resolution (Examples 5.1, 5.2, and 4.1). For example, (L4,M4) is filtered by
pruning to bypass the SAT routine altogether.

Our Contributions.

1. We cast the problem of subsumption resolution over pairs of first-order for-
mulas (L,M) as a SAT problem (Theorem 5.1), ensuring any instance of
subsumption resolution is a model of this SAT problem.

2. We tailor encodings of subsumption resolution (Sections 5.1–5.2) for effective
SAT-based subsumption resolution (Algorithm 1).

3. We integrate our approach into the saturation loop, solving for subsumption
and subsumption resolution simultaneously (Section 6).

4. We implement our work in the theorem prover Vampire and showcase our
practical gains in first-order proving (Section 7).
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3 Preliminaries

We assume familiarity with first-order logic with equality. We include standard
Boolean connectives and quantifiers in the language, and the constants >,⊥ for
truth and falsehood. We use x, y, z for first-order variables, c, d, e for constants,
f, g for functions, p, q, r for atoms, l,m for literals, and L,M for clauses, all
potentially with indices. If L is a clause l1 ∨ . . . ∨ ln, we sometimes consider it
as a multiset of its literals li, and write |L| for its cardinality (i.e. the number n
of literals in L). The empty clause is denoted �. Free variables are universally
quantified. An expression E is a term, atom, literal, clause, or formula.

Substitutions and matches. A substitution σ is a (partial) mapping from
variables to terms. The result of applying a substitution σ to an expression E is
denoted σ(E) and is the expression obtained by simultaneously replacing each
variable x in E by σ(x). For example, the application of σ := {x 7→ f(c)} to the
clause L := {p(x), q(x, y)} yields σ(L) = {p(f(c)), q(f(c), y)}. Note that σ(L) is
a logical consequence of L.

A matching substitution, in short a match, between literals l and m is a
substitution σ such that σ(l) = m. For example, the match of p(x) onto p(f(c))
is {x 7→ f(c)}. Two matches are compatible and can be combined in the same
substitution iff they do not assign different terms to the same variable. For
example, the substitutions {x 7→ f(c), y 7→ g(d)} and {x 7→ f(c), z 7→ h(e)} are
compatible, but {x 7→ f(c)} and {x 7→ g(c)} are not.

Saturation and redundancy. Many first-order systems apply the superposi-
tion calculus [1] in a saturation loop [8]. Given an input set F of clauses, satura-
tion iteratively derives logical consequences and adds them to F . By soundness
and completeness of superposition, if � is derived the system can report unsat-
isfiability of F ; if � is not encountered and no further clauses can be derived,
the system reports satisfiability of F .

Saturation is more efficient when F is as small as possible. For this reason,
saturation-based provers also employ simplifying inferences. Simplifying infer-
ences reduce the number or size of clauses in F . This is formalised using the
following notion of redundancy : a ground clause M is redundant in a set of
ground clauses F if M is a logical consequence of clauses in F that are strictly
smaller than M w.r.t. a fixed simplification ordering �. A non-ground clause M
is redundant in a set of clauses F if each ground instance of M is redundant
in the set of ground instances of F . If M is redundant in F , then M can be
removed from F while retaining completeness.

Subsumption. A clause L subsumes a distinct clause M iff there is a substitu-
tion σ such that

σ(L) ⊆M M (1)

where ⊆M denotes multiset inclusion. We also say that M is subsumed by L.
Note that subsumed clauses are redundant.

Removing subsumed clauses M from the search space F is implemented
through a simplifying rule, checking condition (1) over pairs of clauses (L,M)
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from F . Matches between every literal in L to some literal in M are checked; if
a compatible set of matches is found, then M can be removed from F .

Subsumption resolution. Subsumption resolution aims to remove one redun-
dant literal from a clause. Clauses M and L are said to be the main and side
premise of subsumption resolution, respectively, iff there is a substitution σ, a
set of literals L′ ⊆ L and a literal m′ ∈M such that

σ(L′) = {¬m′} and σ(L \ L′) ⊆M \ {m′}. (2)

If so, M can be replaced by M \ {m′}. Subsumption resolution is hence the rule

L ��M(SR)
M \ {m′}

We indicate the deletion of a clause M by drawing a line through it (��M),
and we refer to the literal m′ of M as the resolution literal of SR. Intuitively,
subsumption resolution is binary resolution followed by subsumption of one of
its premises by the conclusion. However, by combining two inferences into one
it can be treated as a simplifying inference, which is advantageous from the
perspective of proof search dynamics.

Example 3.1. Consider L1,M1 of Figure 1. Subsumption resolution is applied
by using the substitution σ := {x1 7→ g(y1), x2 7→ c, x3 7→ e}. Note that σ(L1) =
p(g(y1), c) ∨ p(f(c), e). σ(L1) and M1 can be resolved to obtain p(g(y1), c). The
clause p(g(y1), c) subsumes M1, since it is a sub-multiset of M1. We have

p(x1, x2) ∨ p(f(x2), x3)
((((

((((
(((

p(g(y1), c) ∨ ¬p(f(c), e)

p(g(y1), c)

4 SAT-based Subsumption Resolution

We describe the main steps of our SAT-based approach for deciding the appli-
cability of subsumption resolution on a pair (L,M) of clauses. The core of our
work solves (2) by finding match substitutions between literals in L and M . Our
technique is summarised in Algorithm 1.

Pruning. The first step of Algorithm 1 prunes pairs (L,M) of clauses that
cannot be simplified by subsumption resolution due to a syntactic restriction
over symbols in L and M , viz. whether the set of predicates in L is a subset of
the predicates in M . If not, then there is a literal in L that cannot be matched
to any literal in M , and hence subsumption resolution cannot be applied.

Example 4.1. The clause pair (L4,M4) from Figure 1 is pruned by Algorithm 1:
the set of predicates in L4 and M4 are respectively {p, q, r} and {p, q}, implying
that the literal r(x3) of L4 cannot be matched to any literal in M4.
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Algorithm 1 SAT-based subsumption resolution over pair (L,M) of clauses

ms ← createMatchSet()
solver ← createSatSolver(ms)
procedure SubsumptionResolution(L,M)

if pruned(L,M) then
return NoSubsumptionResolution

if fillMatchSet(ms, L,M) is false then
return NoSubsumptionResolution

encodeConstraints(solver ,ms)
if solver .solve() is SAT then

return buildConclusion(solver .getSolution(), M) . conclusion of
subsumption resolution

return NoSubsumptionResolution

Match set. The match set of Algorithm 1 computes matching substitutions over
literals of L and M . The match set ms consists of a sparse matrix that assigns
each literal pair (li,mj) ∈ L ×M a substitution σi,j such that σi,j(li) = mj or
σi,j(li) = ¬mj . In addition, a polarity Pi,j is also assigned to (li,mj), as follows:
we set polarity Pi,j = + if σi,j(li) = mj and Pi,j = − if σi,j(li) = ¬mj . This
matrix is sparse because in general not all literal pairs (li,mj) ∈ L ×M can
be matched. Additionally, it is again possible to prune (L,M) while filling the
match set: if a row of the match set is empty, then there is some literal in L
that cannot be matched to any literal in M . In this case, subsumption resolution
cannot use L to simplify M , so the pair (L,M) is pruned.

SAT solver. The solver of Algorithm 1 is the CDCL-based SAT solver intro-
duced previously [10], which supports reasoning over matching substitutions in
addition to standard propositional reasoning. This solver also features direct sup-
port for AtMostOne constraints. Solver performance was tuned for subsumption,
which we retain for subsumption resolution. Each propositional variable v is as-
sociated with a substitution σv, and the solver ensures that all substitutions σv,
for which v is assigned > in the current model, are compatible. Conceptually, a
global substitution σ satisfying the invariant σ =

⋃
{σv | v = >} is kept in the

SAT solver. In the following, we will write this binding as v ⇒ σv ⊆ σ.

Example 4.2. Suppose propositional variables v1 and v2 are associated with sub-
stitutions σ1 := {x 7→ y} and σ2 := {x 7→ z}, respectively. As σ1 and σ2 are
incompatible, the solver will block assigning v1 = > and v2 = > simultaneously
since it would break the above invariant.

Encoding constraints. Given the match set of (L,M), we formalise the sub-
sumption resolution problem (2) as the conjunction of four constraints over
matching substitutions. Our formalisation is given in Theorem 5.1 and is com-
plete in the following sense: subsumption resolution can be applied over (L,M)
iff each constraint of Theorem 5.1 is satisfiable. Application of subsumption reso-
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lution is tested via satisfiability checking over our constraints from Theorem 5.1.
Encodings of our subsumption resolution constraints are given in Section 5.

Building the conclusion. If a model is found for the constraints encoding
subsumption resolution, the conclusion M \{m′} of SR is built using the model.

5 Subsumption Resolution and SAT Encodings

As mentioned in Section 4, we turn the application of subsumption resolution SR

over (L,M) into the satisfiability checking problem of Algorithm 1. We give our
formalisation of SR in Theorem 5.1, followed by two encodings to SAT (Sec-
tion 5.1–5.2) and adjustments to subsumption (Section 5.3).

Theorem 5.1 (Subsumption Resolution Constraints). Clauses M and L
are the main and side premise, respectively, of an instance of the subsumption
resolution rule SR iff there exists a substitution σ that satisfies the following four
properties:

existence ∃i j. σ(li) = ¬mj (3)

uniqueness ∃j′.∀i j.
(
σ(li) = ¬mj ⇒ j = j′

)
(4)

completeness ∀i.∃j.
(
σ(li) = ¬mj ∨ σ(li) = mj

)
(5)

coherence ∀j.
(
∃i. σ(li) = mj ⇒ ∀i. σ(li) 6= ¬mj

)
(6)

We relate these constraints to the definition of subsumption resolution (2).
The existence property (3) requires a literal mj in M such that a literal li of
L can be matched to ¬mj , ensuring the existence of the resolution literal in SR.
Uniqueness (4) asserts that the resolution literal mj of SR is unique, required
because SR performs only a single resolution step. Completeness (5) requires
each literal in L be matched either to the complement of a resolution literal,
or to a literal in M . Since each (complementary) literal in L is matched to one
(resolution) literal of M , the completeness property ensures that the conclusion
of SR subsumes M . Finally, coherence (6) states that all literals in M must be
matched by literals in L with uniform polarity. This implies that all literals of
L other than the resolution literal are present in the conclusion of SR. We note
that these constraints can be used to recreate Example 3.1.

Example 5.1. The clause pair (L2,M2) of Figure 1 does not satisfy the unique-
ness property: both the match between p(x1) and ¬p(y) and the match be-
tween q(x2) and ¬q(c) are negative and so no substitution can satisfy all con-
straints simultaneously. Therefore, subsumption resolution cannot be applied
over (L2,M2).

Example 5.2. The clause pair (L3,M3) violates the coherence property for all
possible σ, since a negative map from p(x1) to ¬p(y) cannot coexist with a
positive map from ¬p(x2) to ¬p(y). Subsumption resolution cannot be performed
over (L3,M3).
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5.1 Direct SAT Encoding of Subsumption Resolution

We present our encoding of subsumption resolution constraints as a SAT prob-
lem, allowing us to use Algorithm 1 for deciding the application of SR. In the
sequel we consider the clauses L,M as in Theorem 5.1.

Compatibility. We introduce indexed propositional variables b+i,j and b−i,j to
represent σ(li) = mj and σ(li) = ¬mj respectively, which we use to track com-
patible matching substitutions between literals of L and M . More precisely, a
propositional variable is created if and only if the corresponding match is pos-
sible (i.e., in the formulas below, if no match exist, replace the corresponding
propositional variable by ⊥). As it is not possible to have simultaneously a sub-
stitution σi,j(li) = mj and σi,j(li) = ¬mj , we also write bi,j to mean either
b+i,j or b−i,j when the polarity of the match is irrelevant. Following Section 4, the
variables are bound to their substitutions:

SAT-based compatibility
∧
i

∧
j

[bi,j ⇒ σi,j ⊆ σ] (7)

SR constraints. Constraints (3)–(6) of Theorem 5.1 employ bounded quantifica-
tion over the finite number of literals in L,M . Expanding these quantifiers over
their respective domains, we translate them into the following SAT formulas:

SAT-based existence
∨
i

∨
j

b−i,j (8)

SAT-based uniqueness
∧
j

∧
i

∧
i′≥i

∧
j′>j

¬b−i,j ∨ ¬b
−
i′,j′ (9)

SAT-based completeness
∧
i

∨
j

bi,j (10)

SAT-based coherence
∧
j

∧
i

∧
i′

¬b+i,j ∨ ¬b
−
i′,j (11)

SR as SAT problem. Based on the above, application of subsumption resolu-
tion is decided by the satisfiability of (7)∧(8)∧(9)∧(10)∧(11). This SAT formula
extended with substitutions represents the result of encodeConstraint() in Al-
gorithm 1 and is used further in Algorithm 3. When this formula is satisfiable,
we construct the substitution σ required for SR by

σ =
⋃
{σi,j | bi,j = >}.

From the model of the SAT solver, we extract the first literal b−i,j assigned >,

from which we conclude that the jth literal in M is the resolution literal of SR.
As such, application of SR over L and M results in replacing M by M \ {mj}.
Remark 5.1. Implicitly, all li literals are mapped to at most one literal mj .
Indeed, if there were several literalsmj such that σ(li) = mj or σ(li) = ¬mj , then
either the respective matches are not compatible (guarded by the compatibility
property (7)), there are identical literals in M , or M is a tautology (which is not
allowed).
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Remark 5.2. While we defined bi,j to be true if, and only if, σi,j ⊆ σ, we only
encode the sufficient condition bi,j ⇒ σi,j ⊆ σ. The completeness property (10)
together with Remark 5.1 state that each li must have exactly one match to
some mj or ¬mj . Therefore, if σi,j ⊆ σ then the respective bi,j must be true and
the condition also becomes necessary: bi,j ⇐ σi,j ⊆ σ.

Example 5.3. Consider the pair (L1,M1) of Figure 1. The match set ms of Al-
gorithm 1 is:

σi,j =

[
{x1 7→ g(y1), x2 7→ c} {x1 7→ f(c), x2 7→ e}

⊥ {x1 7→ c, x2 7→ e}

]
Pi,j =

[
+ −
−

]
Since σ2,1 is incompatible with any substitution, b2,1 = ⊥ need not be defined.
This also allows to disregard SAT clauses that are trivially satisfied. The exis-
tence (8) and completeness (10) properties cannot have empty clauses: this is
easily detected while filling the match set, and the instance of SR is pruned.
Adding falsified literals in these constraints is unnecessary. The uniqueness (9)
and coherence (11) properties have only negative polarity literals and therefore
there is no need to add clauses containing b2,1. In light of the previous comment,
we use variables b+1,1, b−1,2 and b−2,2 and encode SR using the following constraints:

b+1,1 ⇒ {x1 7→ g(y1), x2 7→ c} ⊆ σ SAT-based compatibility of b+1,1

b−1,2 ⇒ {x1 7→ f(c), x2 7→ e} ⊆ σ SAT-based compatibility of b−1,2

b−2,2 ⇒ {x2 7→ c, x3 7→ e} ⊆ σ SAT-based compatibility of b−2,2

b−1,2 ∨ b
−
2,2 SAT-based existence

b+1,1 ∨ b
−
1,2 SAT-based completeness, i = 1

b−2,2 SAT-based completeness, i = 2

The uniqueness (9) and coherence (11) properties are trivial here because the
problem is simple: all b−i,j have the same j, and no literal mj can be mapped
with different polarities. By using SAT solving from Algorithm 1 over the above
SAT constraints, we obtain the SAT model b+1,1 ∧ ¬b

−
1,2 ∧ b

−
2,2, with b−2,2 the first

literal assigned > with negative polarity. The application of SR over (L1,M1)
yields the conclusion M \ {m2} = p(g(y1), c), replacing M .

5.2 Indirect SAT Encoding of Subsumption Resolution

SAT-based formulas (9) and (11) may yield many constraints, with worst-case
complexity O(|L|2|M |2). In practice such situations rarely occur, since the match
set ms is sparsely populated. Nevertheless, to alleviate this worst-case complex-
ity, we further constrain the approach of Section 5.1. We introduce structur-
ing propositional variables cj such that cj is > iff there exists a literal li with
σ(li) = ¬mj , which we encode as:
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SAT-based structurality
∧
j

[
¬cj ∨

∨
i

b−i,j

]
∧
∧
j

∧
i

(
cj ∨ ¬b−i,j

)
(12)

SR as revised SAT problem. While the compatibility property (7) remains
unchanged, the SR constrains of Theorem 5.1 are revised as given below.

SAT-based revised existence
∨
j

cj (13)

SAT-based revised uniqueness AtMostOne({cj , j = 1, ..., |M |}) (14)

SAT-based revised completeness
∧
i

∨
j

bi,j (15)

SAT-based revised coherence
∧
j

∧
i

(
¬cj ∨ ¬b+i,j

)
(16)

Similarly to Section 5.1, application of subsumption resolution is decided via
Algorithm 1 by checking satisfiability of (7) ∧ (12) ∧ (13) ∧ (14) ∧ (15) ∧ (16).
Using the above SAT formula as the result of encodeConstraint() in Algorithm 1,
the worst-case behaviour is eliminated in exchange for O(|M |) propositional
variables, cj . While the direct encoding of Section 5.1 is more efficient on small
problems as it requires fewer variables and constraints, the indirect encoding of
this section is expected to behave better on larger problems (see Section 7).

Remark 5.3. Note that the uniqueness property (14) is handled via AtMostOne
constraints, based on the approach of [10]. If a variable cj is set to >, then our
SAT solver in Algorithm 1 infers that all other variables cj′ are set to ⊥.

Example 5.4. Consider again the clause pair (L1,M1) of Figure 1. Compared to
Example 5.3, our revised encoding of SR requires one additional variable c2, as
m2 in Example 5.3 is used with negative polarity. The revised constraints are:

b+1,1 ⇒ {x1 7→ g(y1), x2 7→ c} ⊆ σ SAT-based compatibility of b+1,1

b−1,2 ⇒ {x1 7→ f(c), x2 7→ e} ⊆ σ SAT-based compatibility of b−1,2

b−2,2 ⇒ {x2 7→ c, x3 7→ e} ⊆ σ SAT-based compatibility of b−2,2

¬c2 ∨ b−1,2 ∨ b
−
2,2 SAT-based structurality of c2

c2 ∨ ¬b−1,2 SAT-based structurality of c2

c2 ∨ ¬b−2,2 SAT-based structurality of c2

c2 SAT-based revised existence

AtMostOne({c2}) SAT-based revised uniqueness

b+1,1 ∨ b
−
1,2 SAT-based revised completeness, i = 1

b−2,2 SAT-based revised completeness, i = 2
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The SAT solver returns b+1,1 ∧ ¬b
−
1,2 ∧ b

−
2,2 ∧ c2 as a solution to the above SAT

problem, from which the application of SR yields a similar result to that of
Example 5.3.

Remark 5.4. We note that our method naturally supports commutative pred-
icates, such as equality. Let ' denote object-level equality. Suppose we have
literals li := a ' b and mj := c ' d. Two propositional variables with associated
matching substitutions σi,j and σ′i,j are introduced, where σi,j matches a ' b
against c ' d and σ′i,j matches a ' b against d ' c. If zero or one matches exist,
then the problem behaves exactly like the non-symmetric case. If both matches
exist, then σi,j and σ′i,j must be incompatible: otherwise, c and d would be iden-
tical terms and the trivial literal mj would have been eliminated. Therefore, our
SAT-based encodings for subsumption resolution do not need to be adapted and
behave as expected.

5.3 SAT Constraints for Subsumption

In the new framework of Algorithm 1, the formulation suggested by [10] was
adjusted to work with subsumption resolution. Algorithm 1 needs very little
adaptation for subsumption: the encodeConstraint() method uses the encoding
below, and the conclusion needs not be built as only the satisfiability of the
formulas is relevant. The re-written SAT encoding becomes:

subsumption compatibility
∧
i

∧
j

(
b+i,j ⇒ σi,j ⊆ σ

)
(17)

subsumption completeness
∧
i

∨
j

b+i,j (18)

multiplicity conservation
∧
j

AtMostOne({b+i,j , i = 1, ..., |L|}) (19)

Note that the set of propositional variables used in our SAT-based formulas
(17)–(19) encoding subsumption is a subset of the variables used by our SAT-
based subsumption resolution constraints.

Pruning for subsumption. The pruning technique described in Section 4 can
be adapted into a stronger form for subsumption. In this case, we will check for
multi-set inclusion between multi-sets of (predicates, polarity) pairs.

6 SAT-based Subsumption Resolution in Saturation

In this section we discuss the integration of our SAT-based subsumption resolu-
tion approach within saturation-based proof search.

Forward/backward simplifications. For the purpose of efficient reasoning,
saturation algorithms use two main variants of simplification inferences imple-
menting redundancy. Forward simplifications are applied on a newly generated
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Algorithm 2 SAT-based subsumption in saturation

ms ← createMatchSet()
solver ← createSatSolver(ms)
procedure Subsumption(L,M)

FS, FSR ← pruned(L,M)
. FS (resp. FSR) gets true if subsumption (resp. subsumption resolution) cannot

succeed
fillMatchSet(ms, L,M) . Build the whole match set, and update FS and FSR

if FS then . subsumption cannot be applied
return NoSubsumption

encodeConstraints(solver ,ms) . SAT-constraints of Section 5.3
if solver .solve() is SAT then

return Subsumed

else
return NoSubsumption

Algorithm 3 SAT-based subsumption resolution in saturation
for bit empty space only to get– with subsumption already set up via Algorithm 2

procedure SubsumptionResolution(L,M)
. upon Algorithm 2 failing to subsume

. the match set is already set up
if FSR then

return NoSubsumptionResolution

encodeConstraints(solver ,ms) . SAT constraints of Section 5.1 or Section 5.2
if solver .solve() is SAT then

return buildConclusion(solver .getSolution(), M) . conclusion of
subsumption resolution

return NoSubsumptionResolution

clauseM to check whetherM can be simplified by an existing clause L. Backward
simplifications use a newly generated clause L to check whether L can simplify
existing clauses M . Backward simplification tends to be more expensive.

SAT-based subsumption resolution in saturation. Since subsumption is a
stronger form of simplification, subsumption is checked before subsumption res-
olution. This means that subsumption resolution is applied only if subsumption
fails for all candidate premises. We integrate Algorithm 1 within saturation so
that it is used both for subsumption and subsumption resolution.

Algorithms 2–3 display a variation of the integration of our SAT-based ap-
proach for checking subsumption resolution during saturation. Since most of the
setup of subsumption is also required for subsumption resolution, both simplifica-
tion rules are set up at the same time. As such, whenever turning to subsumption
resolution, the same match set ms from Algorithm 2 can be reused, while also
taking advantage of pruning steps performed during subsumption.

We modified the forward simplification algorithm as described in Algorithm 4.
In this new setting, checking the same pair (L,M) for subsumption directly fol-
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Algorithm 4 Forward simplification with SAT-based subsumption resolution

procedure ForwardSimplify(M,F )
M∗ ← NoSubsumptionResolution

for L ∈ F \ {M} do
if subsumption(L,M) is Subsumed then . using Algorithm 2

F ← F \ {M}
return > . M is subsumed and removed

if M∗ = NoSubsumptionResolution then
M∗ ← subsumptionResolution(L,M) . using Algorithm 3

if M∗ 6= NoSubsumptionResolution then
F ← F \ {M} ∪ {M∗} . M∗ is the conclusion of subsumption resolution

between L and M
return >

return ⊥

Algorithm 5 Evaluation of SAT-based subsumption resolution

procedure ForwardSimplifyWrapper(M,F )
s← startTimer()
r ← ForwardSimplify(M,F ) . Benchmarked method

. Prevent modification of F
e← endTimer()
writeInFile(e− s)
r′ ← Oracle(M,F )
checkCoherence(r, r′) . Empiric check
return r′

lowed by subsumption resolution enables us to use Algorithms 2–3 efficiently.
Algorithm 4 pays the price of checking subsumption resolution even if subsump-
tion may succeed, but in practice inefficiencies in this respect are seen rarely.

Role of indices. When applying inferences that require terms or literals to
unify or match, modern automated first-order theorem provers typically use
term indices [9] to consider only viable candidates within the set of clauses.
Subsumption and subsumption resolution is no exception. Our testbed system
Vampire currently uses a substitution tree to index clauses for matching by
their literals (Section 7).

7 Implementation and Experiments

We implemented and integrated our SAT-based subsumption resolution ap-
proach in the saturation-based first-order theorem prover Vampire [6]3.

Versions compared. We use following versions of Vampire in our evaluation:

• VampireM is the master branch without SAT-based subsumption resolution;

3 https://github.com/vprover/vampire/tree/robin c-subsumption resolution

https://github.com/vprover/vampire/tree/robin_c-subsumption_resolution
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• VampireI is the SAT-based subsumption resolution with the indirect encod-
ing of Section 5.2 and a standard forward simplification algorithm with Algo-
rithm 1 — that is, Algorithm 4 is not used here;
• Vampire∗I uses the indirect encoding with Algorithms 2–4;
• Vampire∗D uses the direct encoding of Section 5.1 and Algorithms 2–4.

Experimental setting. To evaluate our work, we used the examples of the
TPTP library (version 8.1.2) [15]. In our evaluation, 24 926 problems were used
out of the 25 257 TPTP problems; the remaining problems are not supported by
Vampire (e.g., problems with both higher-order operators and polymorphism).

Our experimental evaluation was done on a machine with two 32-core AMD
Epyc 7502 CPUs clocked at 2.5 GHz and 1006 GiB of RAM (split into 8 memory
nodes of 126 GiB shared by 8 cores). Each benchmark problem was run with
the options -sa otter -t 60, meaning that we used the Otter saturation
algorithm [7] with a 60-second time-out. We use the Otter strategy because
it is the most aggressive in terms of simplification and therefore runs the most
subsumption resolutions. We turned off the AVATAR framework (-av off) in
order to have full control over SAT-based reasoning in Vampire.

Evaluation setup. Our evaluation process is summarised in Algorithm 5, in-
corporating the following notes.
• The conclusion clause of the subsumption resolution rule SR is not necessarily

unique. Therefore, different versions of subsumption resolution, including our
work based on direct and indirect SAT encodings, may not return the same
conclusion clause of SR. Hence, applying different versions of subsumption
resolution over the same clauses may change the saturation process.
• Saturation with our SAT-based subsumption resolution takes advantage of

subsumption checking (see Algorithms 3–4). Therefore, only checking sub-
sumption resolution on pairs of clauses is not a fair nor viable comparison,
as isolating subsumption checks from subsumption resolution is not what we
aimed for (due to efficiency).
• CPU cache influences results. For example, two consecutive runs of Algo-

rithm 4 may be up to 25% faster on second execution, due to cache effects.
For the reasons above, we decided to measure the run time of a complete

execution of Algorithm 4. To prevent the branches to change, an Oracle is used
to choose the path to follow. The Oracle is based on our indirect SAT encoding
(Vampire∗I). This way, the same computation graph is used for all evaluated
methods. To prevent cache preheating, we run the Oracle after the respective
evaluated method. This way the cache is in a normal state for the evaluated
method. To measure the run time of Algorithm 4, a Wrapper method was built on
top of the Forward Simplify procedure of Algorithm 4. This Wrapper replaces
the Forward Simplify loop in Vampire with minimal changes to the code. To
empirically verify the correctness of our results, we used the Wrapper to compare
the result of the evaluated method with the result of the Oracle.

Experimental details and analysis. Figure 2 lists the cumulative instances
solved by the respective Vampire versions, highlighting the strength of forward
simplifications for effective saturation.
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Fig. 2: Cumulative instances of applying subsumption resolution, using the
TPTP examples. A point (n, t) on the graph means that n forward simplify
loops were executed in less than t µs. The flatter the curve, the faster the Vam-
pire version is.

Prover Average Std. Dev. Speedup

VampireM 42.63µs 1609.06µs 0 %
VampireI 40.13µs 1554.52µs 6.2 %
Vampire∗D 34.39µs 1047.85µs 23.9 %
Vampire∗I 34.55µs 250.25µs 23.4 %

Table 1: Average time spent in the Forward Simplify loop. Vampire∗D is the
fastest method, closely followed by the Vampire∗I . However, the indirect encod-
ing is much more stable and has a lower variance.

Remark 7.1. Our experimental summary in Figure 2 shows that the total num-
ber of Forward Simplify loops ran in 60 seconds. However, the average and
standard deviation were computed only on the intersection of the problems
solved. That is, only the Forward Simplify loops finished by all the methods
are taken into account. Otherwise, if a hard problem is solved in, for instance,
1 000 000 µs by one method, and times out for another, the average for the better
would increase a lot, but the weaker method would not be penalised. Table 1
summarises the average solving time of our evaluation.

Comparison of encodings. We correlated the constraint building and SAT
solving time with the length of clauses, using the different encodings of Sec-
tions 5.1–5.2. Figure 3 shows that on larger clauses, the average computation
time increases faster for the direct encoding than for the indirect encoding.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
len(L)

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
le

n(
M

)

0.0 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.9 1.0 0.7 0.8 0.9 1.3 0.9 0.8 1.0 1.3 1.0

0.0 0.2 0.4 0.5 0.7 0.9 1.2 1.3 1.5 2.1 2.3 2.1 2.5 2.3 2.8 3.4 4.0 5.1 5.0 6.2

0.0 0.3 0.6 0.8 1.0 1.3 1.6 1.7 2.1 2.7 3.6 3.5 3.2 2.7 2.2 1.8 2.7 1.8 2.4 2.1

0.1 0.5 0.9 1.2 1.4 1.6 1.9 2.3 3.1 4.2 5.1 4.3 3.9 3.4 2.5 2.3 2.4 2.5 2.8 2.9

0.1 0.6 1.1 1.6 1.7 1.8 2.2 2.5 3.2 4.3 5.0 4.6 4.0 3.8 3.1 2.4 2.2 2.5 3.2 2.4

0.4 1.6 2.6 3.0 4.1 3.0 2.8 3.2 3.9 4.8 5.9 5.0 4.6 4.4 3.5 2.9 2.6 2.8 3.2 3.1

0.2 1.4 1.6 2.2 3.4 3.7 3.7 3.3 3.7 3.6 3.9 4.1 3.8 3.9 2.9 2.7 2.7 2.9 3.3 3.5

1.7 2.8 4.9 7.6 7.8 8.4 7.7 7.2 5.0 4.5 4.6 4.8 4.4 3.6 2.7 2.5 3.0 3.6 4.3 4.0

0.5 2.0 2.9 3.0 4.2 6.1 6.6 7.7 6.9 5.2 5.4 5.2 4.5 4.4 3.1 2.9 3.2 3.4 4.3 4.2

1.5 4.1 3.8 5.0 4.9 7.9 11.9 14.9 12.2 9.2 7.1 6.7 5.3 5.2 3.8 3.8 4.0 4.9 5.9 6.0

0.4 2.4 2.3 3.5 6.2 9.1 12.6 11.2 11.3 8.3 6.2 5.3 4.4 4.2 3.4 3.2 3.5 4.2 4.0 5.3

2.6 1.2 2.6 4.2 4.9 5.5 8.6 9.7 8.3 10.7 8.7 6.4 5.0 4.0 3.7 3.9 4.2 6.5 4.8 4.8

1.2 1.3 1.9 2.3 3.1 3.6 9.1 6.5 4.2 4.6 5.6 5.0 4.1 4.4 3.7 3.6 4.5 4.8 5.1 5.2

1.3 1.2 1.7 2.0 2.4 3.3 12.8 8.7 3.8 5.2 5.2 6.5 5.6 6.0 6.4 4.4 5.8 6.3 5.7 5.7

1.0 2.0 1.6 2.0 2.4 2.0 2.6 3.0 2.7 2.9 2.9 3.5 3.8 4.4 5.0 5.1 4.9 5.0 6.1 6.5

2.2 3.7 1.8 2.3 4.0 3.9 4.6 4.0 4.0 2.9 2.8 4.4 5.6 5.5 7.3 7.1 9.9 6.3 6.8 6.7

2.2 2.2 2.1 1.7 1.5 2.8 2.7 2.1 2.3 2.8 3.0 3.6 4.5 5.6 5.5 5.7 7.9 5.1 5.1

4.0 3.4 3.2 2.8 4.2 2.8 11.1 12.9 4.9 3.6 6.7 4.9 5.3 5.9 6.6 6.7 9.1 5.1

2.3 2.3 2.2 2.5 2.0 3.3 3.8 2.9 3.4 3.7 4.4 4.8 5.7 6.5 7.4 7.8 8.8 9.7 8.9

10 1

100

101

(b) Average time (µs) for creating/solving indirect encoding constraints (Section 5.2).

Fig. 3: Average time (µs) spent on the creating and solving SAT-based subsump-
tion resolution constraints.

Prover Total Solved Gain/Loss

VampireM 10 555 baseline
Vampire∗D 10 667 (+141, −29)
Vampire∗I 10 658 (+133, −30)

Table 2: Number of TPTP problems solved by the considered versions of Vam-
pire. The run was made using the options -sa otter -av off with a timeout
of 60 s. The Gain/Loss column reports the difference of solved instances com-
pared to VampireM .



16 Robin Coutelier, Laura Kovács, Michael Rawson, and Jakob Rath

Experimental summary. Our experiments show that Vampire∗I yields the
most stable approach for SAT-based subsumption resolution (Table 1), espe-
cially when it comes on solving large instances (Figure 3). Our results demon-
strate the superiority of SAT-based subsumption resolution used with forward
simplifications in saturation (e.g., Vampire∗D and Vampire∗I), as concluded by
Table 2.

8 Conclusion

We advocate SAT solving for improving saturation-based first-order theorem
proving. We encode powerful simplification rules, in particular subsumption res-
olution, as SAT problems, triggering eager and efficient reasoning steps for the
purpose of keeping proof search small. Our experiments with Vampire showcase
the benefit of SAT-based subsumption. In the future, we aim to further extend
simplification rules with SAT solving, in particular focusing on subsumption
demodulation for equality reasoning [3].
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6. Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire.
In CAV, pages 1–35, 2013.

7. William McCune and Larry Wos. Otter— the CADE-13 competition incarna-
tions. Journal of Automated Reasoning, 18:211–220, 1997.

8. Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem Proving.
In Handbook of Automated Reasoning, pages 371–443. Elsevier and MIT Press,
2001.



SAT-Based Subsumption Resolution 17

9. I. V. Ramakrishnan, R. Sekar, and Andrei Voronkov. Term Indexing. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2
volumes), pages 1853–1964. Elsevier and MIT Press, 2001.

10. Jakob Rath, Armin Biere, and Laura Kovács. First-Order Subsumption via SAT
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