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Abstract—Automated theorem provers (ATPs) typically run in
a single thread. Hardware parallelism is then exploited through
portfolios, in which distinct and disjoint strategies are launched
as fully-independent processes and do not cooperate. Whilst there
has been some historic exploration of cooperation, the technical
challenge has prevented this from being fully explored in modern
ATPs. The following describes the non-trivial engineering effort
required to make the Vampire theorem prover multithreaded,
such that multiple proof attempts coexist in the same mem-
ory space. This lays the foundations for a new generation of
proof search techniques able to cooperate with other proof
attempts running in parallel. As an initial demonstration, we
implement a shared persistent grounding daemon that receives
all clauses generated by all proof attempts and checks whether
a heuristically-grounded version is unsatisfiable. The resulting
multi-threaded system achieves limited contention compared
to the previous process-based implementation, and persistent
grounding improves performance in certain cases.

I. INTRODUCTION

Whilst parallel computational resources have become abun-
dant and used with effect in many areas of computer science,
they are yet to make a significant impact on automated theorem
proving. We have seen substantial developments in SAT solv-
ing [1], [2], [3] and progress within SMT [4], [5], [6] but, to
date, parallel automated theorem proving is typically historic
with no modern implementation [7], [8], [9], or parallel at the
level of portfolios without shared memory. The popularity of
parallel portfolios is likely due to their ease of implementation
and practical impact: it is common folklore that a good way
to combat explosive proof search is a set of complementary
search strategies. This success goes some way to explaining
why research in other directions has been slow.

In this paper we discuss our initial work on a new shared-
memory architecture for the VAMPIRE automated first-order
theorem prover [10]. VAMPIRE is a saturation-based theorem
prover that implements the superposition calculus [11] as
its main mode, but also contains routines for instance-based
reasoning [12] and finite model building [13]. It has won first
place in the main track of the CASC competition for over
20 years [14] and implements advanced reasoning techniques
for theory reasoning [15], [16], [17], inductive reasoning [18§]
and higher-order reasoning [19]. It consists of over 200k lines
of CH with contributions from over 15 developers and a
permissive licence [20]. As such, it is a mature and highly-
complex piece of software.

Since 2010, VAMPIRE has supported some form of multi-
process parallelism where a portfolio of predetermined (and
automatically generated) strategies (sets of proof search
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heuristics) could be implemented by forked processes. This
achieves good results, but limits options for cooperation be-
tween proof attempts due to reliance on inter-process commu-
nication. In 2015, we proposed a concurrent architecture [21]
that interleaved proof attempts within a single process whilst
sharing (some) memory to explore a novel method for coop-
eration. Our conclusion at the time was that we needed true
shared-memory parallelism to make progress.

We experienced two main difficulties with such an approach
in VAMPIRE. The first is that it is difficult to implement
correctly: this is a well-known feature of parallel program-
ming, and we discuss our approach and experience below.
The second is contention, which for our purposes is negative
performance impact caused by multiple threads using the same
resource simultaneously, typically by having to wait for a lock
held by another thread. Avoiding contention requires careful
design of shared-memory schemes within an ATP.

A reasonable line of questioning raised in review asks
whether it would be easier to start from scratch. It would
probably be technically easier to do so: however, ATP sys-
tems at VAMPIRE’s level of maturity take significant time to
develop, even with the benefit of hindsight, so instead we offer
pragmatic suggestions to convert existing systems.

The two main contributions of this paper are (1) A de-
tailed discussion of the technical challenges and experience
involved in transitioning a complex, mature theorem prover
from a process-based model to a thread-based, shared-memory
architecture (Section II), and (2) A new persistent grounding
technique designed to take advantage of the shared memory
concurrency provided by the architecture (Section III).

II. CHALLENGES AND EXPERIENCE

This section reflects on the engineering challenges we faced
when converting Vampire into a multi-threaded solver, and the
approach we took to overcome them. We include this discus-
sion to provide guidance for others attempting to complete
a similarly-challenging task. Currently, the implementation is
available in a branch of the VAMPIRE repository’.

A. Design

The architecture is based on the previous process-based ar-
chitecture, which has not previously been described elsewhere.
As illustrated in Fig. 1, the input problem is first parsed into
a set of initial formulas over a signature (that is, the symbols
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Fig. 1. Schematic of Architecture.

appearing in the problem) shared between all proof attempts.
A strategy scheduler uses a portfolio of strategies to generate
a set of k threads. The parent scheduler supervises the child
threads, reporting success if any child succeeds and spawning
new threads to keep available CPU cores busy. Each thread
preprocesses the problem, potentially extending the signature
by e.g. introducing names for subformulas, and then performs
proof search. This typically involves the use of complex data
structures (ferm indices) for storing and searching for relevant
clauses. VAMPIRE’s complex custom memory allocator is
disabled for this work, incurring a small performance hit.
Two complex parts of the architecture are currently pro-
tected by a coarse-grained lock. Only one proof attempt should
print a proof, so this process is gated such that subsequent
successful attempts block forever. A more difficult issue is
term sharing. Part of the standard VAMPIRE is a hash-consing
structure used to implement perfect term sharing, i.e. avoid
duplication of terms. This is very convenient as it allows
rapid identification of terms by pointer comparison, a property
which is assumed throughout VAMPIRE. In our multithreaded
architecture we share this structure and protect it by a lock.
Term sharing must be able to distinguish between terms built
solely from the shared signature and terms involving thread-
specific symbols: that is, terms that could appear in any attempt
versus terms that only have meaning in a single attempt.

B. Approach

Converting a large, complex and performance-sensitive sys-
tem such as VAMPIRE to work in thread-parallel is not es-
pecially easy. The approach outlined previously [21] in which
proof attempts interleave in a single thread of execution, rather
than exist concurrently, at first seemed like a good intermediate
step before starting work on a fully thread-parallel, shared-

memory system. However, we found that bugs introduced by
interleaved proof attempts were very difficult to track down,
not least because very often they had no observable effect.

Instead we take a more chaotic approach, leaning heavily on
tooling for developing multi-threaded applications, particularly
tools for detecting data races. Data races, for our purposes,
are execution scenarios in which two threads access shared
memory without synchronisation, and at least one access is a
write. Detection of races is extremely useful in our case as it
provides a good proxy for identifying when one proof attempt
influences the execution of another. Nearly all thread-related
bugs — of which there were many — could then be squashed
by examining the context in which races occur and introducing
synchronisation or data reorganisation where appropriate.

Tools for detecting dubious constructs and execution states
in low-level programming have improved significantly. We
were particularly impressed by the LLVM-based [22] linter
clang-tidy [23], which helped to identify and remove ex-
isting discouraged constructs in VAMPIRE’s codebase, and
the ThreadSanitiser [24] compiler instrumentation for the
detection of data races. Armed with these tools, we simply
introduced threads into VAMPIRE and waited for the tool
reports. Races happened frequently in VAMPIRE at first, where
code written under the implicit assumption of single-threaded
execution breaks down, triggering a ThreadSanitiser report.

In general, data races tend to lead to crashes rather than
unsound behaviour but to avoid the latter we rely on (i)
existing mechanisms for automated testing utilising large sets
of labelled benchmarks [25], and (ii) VAMPIRE’s support for
proof checking which allows us to independently verify the
correctness of proof search [26].

C. Thread-Local Storage, Atomics and Locking

The most common source of the races was the re-use
of heap-allocated temporaries such as stacks or maps, often
used in iterative translations of recursive algorithms present
throughout the system. Reusing these values once allocated
can improve performance in the single-threaded case by
avoiding repeated (de)allocations. The majority of such cases
can be resolved by the use of thread-local storage as a
compromise, incurring one allocation per thread. The 2011
C++ standard [27] provides a thread_local keyword and
associated machinery.

Another problem area is integer counters, often used for
computing statistics and satisfying freshness constraints such
as “select a fresh symbol for the Skolem function”. Usually the
only operation required is “read-and-increment”, but this must
sometimes be reflected across threads to maintain soundness
of e.g. Section III. This operation can be safely achieved
atomically: C+’s <atomic> proved useful here.

Only surprisingly rarely was a full lock required to synchro-
nise compound operations. This relatively-coarse technique
was only required for widely-used modules with non-trivial
internal invariants such as the implementation of term sharing.
Due to the small number of locks, deadlock was mostly
avoided.



D. Data Organisation and Partitioning

Significant headaches can be avoided by carefully choosing
which data are shared between proof attempts. A clever im-
plementation could aggressively share all common data using
very fine-grained synchronisation. For example, VAMPIRE
maintains various term indices to quickly retrieve various
syntactic data that satisfy some condition, like “retrieve all the
literals that unify with L”. In principle it would be possible
to share at least some of these and save some memory, but
in practice this is enormously difficult to implement correctly
and efficiently. However, we remain interested in parallel term
indices and may investigate these independently in future.

Currently, each proof attempt maintains its own clause
space, computed properties and statistics, indices, introduced
definitions, and ground reasoning systems such as those used
in global subsumption [28] or AVATAR [29]. They do however
share synchronised access to creating fresh symbols (although
not all symbols are used in all proof attempts), term sharing,
and persistent grounding (Section III). We feel this is a good
initial trade-off.

E. Timing and Internal Control

One crucial difference between the multi-processing and
multi-threading approaches to portfolio modes is that pro-
cesses can be signalled to stop execution in a timely manner,
whereas most threading abstractions do not have this ability.
Threaded proof attempts must therefore frequently check for
exit conditions, e.g. another proof attempt succeeded/time is
up. Making these checks can be tricky: too frequently and
there will be some performance impact; too infrequently and
user experience or portfolio performance will begin to degrade.
VAMPIRE executes a series of loops in its internal search
routines: each iteration of these loops can take drastically
different lengths of time depending upon the input problem.

F. Synchronisation and Performance

All the synchronisation measures introduced do incur some
performance impact. Atomic operations are not quite free,
but are very close in practice. Thread-local storage requires
some checks for lazy initialisation, which can occur frequently
if the compiler is unable to elide them, and is therefore
not as cheap as we would like. VAMPIRE uses a global
“environment” structure which was made thread-local: C++
semantics mean that this is considerably more efficient if an
extra level of indirection is added such that the environment is
accessed via thread-local pointer. Locks are currently a major
bottleneck: while contention was expected to be high, another
problem is that the locked sections are typically relatively
short and inexpensive compared to the locking overhead. We
will investigate finer-grained locking and alternative locking
strategies in future.

G. Experimental Evaluation

To validate the resulting system we carry out two experi-
ments using the 500 first-order problems from the 2020 first-
order theorem division of CASC. All experiments in this paper

TABLE I

EVALUATING SCALABILITY OF THREADED ARCHITECTURE.
Threads | # solved  Avg time (s) | Total/Avg (s) on N Speedup
1 399 7.05 2187/ 6.21 -
2 413 4.80 987 /2.80 2.22
4 412 3.49 520 /148 421
6 413 2.79 539 /1.53 4.06
8 402 3.27 533 / 1.51 4.10
10 404 3.26 534 /1.52 4.10

are run for 60 seconds per problem on a Ubuntu desktop
machine with an 8-core CPU? and 16GB RAM.

Firstly, we compare the new thread-based architecture
with the previous process-based implementation. The thread-
based architecture solves 413 problems (10 uniquely) and the
process-based architecture solves 424 problems (21 uniquely).
The slight degradation in performance is unsurprising given
the additional contention in the thread-based approach. The
symmetric difference reflects the sensitivity of VAMPIRE to
variations in timing and memory usage. On average, the new
thread-based architecture took 1.25x longer to solve problems.
However, this is heavily influenced by short-running problems.
Excluding problems solved in under 1s, the slowdown is 1.02x.

Secondly, we examine the scalability of the thread-based
solution using the same set of problems whilst varying the
number of threads. The results are in Table I. The number of
problems solved peaks between 2 and 6 threads. We achieve
approximately-linear speedup with 2 and then 4 threads, but
then plateau (based on the total time taken to solve the 352
problems solved by all attempts). The average solution time
overall was the lowest for 6 threads — the lower average
solution times for the intersection of solved problems suggests
that these were the easier problems.

In summary, performance degrades slightly when replacing
processes by threads (most likely due to contention) but the
overhead is acceptable (~ 2% on longer running problems).

III. PERSISTENT GROUNDING

As a first step to explore the benefits of the new architecture,
we introduce a lightweight form of clause sharing. All clauses
produced by all proof attempts are grounded, shared, and
passed to a SAT solver to detect a form of global inconsistency,
i.e. an inconsistency in the ground abstraction of the full search
space explored by all proof attempts, past and present.

The idea of grounding the search space of a first-order
prover in an attempt to detect inconsistency is not novel [30],
[31] and some methods, such as instance generation [12]
perform grounding as part of proof search already. What is new
in our approach is the persistence of the grounding: grounded
clauses escape from and outlive their thread, allowing clauses
from different proof attempts to interact.

A. Extension to Architecture

We introduce a queue (synchronised by single lock) that
proof attempts add produced (and grounded) clauses to and a
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thread that loops, adding the grounded clauses to the MiniSAT
solver [32] — yielding if the queue is empty — and checking
for unsatisfiability. If the grounding is inconsistent the thread
will report this immediately, interrupting other threads. Cur-
rently, full proof printing is not implemented and only the
unsatisfiable core of grounded first-order clauses is identified.
It is work-in-progress to rebuild the derivations that produced
these clauses as a separate post-processing step.

We maintain a mapping from (grounded) first-order literals
to SAT literals such that a fresh first-order literal leads to
a fresh SAT literal, with the mapping stored for later. This
mapping relies on the shared term indexing structure to effi-
ciently identify atoms that are shared between proof attempts,
ensuring they are represented using the same SAT variables.

B. Grounding Choices

There are numerous ways in which we could choose to
ground first-order clauses. We implement three alternatives:

o fresh: all variables are replaced by a single fresh constant.

« common: all variables are replaced by the most common
constant from the input problem.

« input: the clause is grounded repeatedly for every con-
stant in the input problem.

Where the input problem is multi-sorted the above constants
are selected per-sort. We compute constant frequency on
the problem before preprocessing i.e. before subformulas are
copied or reduced.

C. Experimental Analysis

We use the same 500 problems and experimental setup as
above to analyse the impact of this new addition. Our first
experiment is to isolate the impact of persistent grounding
from threading by running with a single thread. In this setting,
we solve 399 problems without persistent grounding and
398 with (using the fresh grounding) but with a symmetric
difference of 11 problems — persistent grounding allows
us to solve 5 problems we did not solve without it. Some
problems were also solved significantly faster: for 8 problems
the speedup was > 2, with one problem (SWB105+1) solved
15x faster (from 25s to 1.6s).

Next, we compare the different grounding mechanisms
(using 6 threads). The results are given in Table II (top 4 rows).
The first observation is that we solve 8 problems that we did
not solve without persistent grounding, and each grounding
mechanism solves some problems uniquely.

However, the average time to solve each problem increases.
The fresh grounding mechanism fares the worst with the
common grounding mechanism producing proofs more than
a second before other mechanisms 5 times. Within this there
are some notable interesting cases. For example, GRP667+1
was solved using input in 15s whilst others failed to solve it
using persistent grounding and it was eventually solved in the
normal way after 50s. Similarly, ITP006+4 was solved using
common in 9s rather than the 25s elsewhere.

TABLE II
PERSISTENT GROUNDING EVALUATION.

# solved (uniq) | Best by >1s | Avg. time (s)
none 413 (6) - 2.79
fresh 410 (1) 0 3.09
common 411 (2) 5 2.95
input 411 (2) 3 3.11
fresh 410 (2) 4 2.94
active-only 412 (3) 0 3.01
no-splitting 393 (5) 16 3.19
combination of PG | 421 (12) [ - [ 2.84 (best)

We explore two further variants (rows 5-7 of Table II):
in active-only we restrict persistent grounding only to so-
called active clauses [10] and in no-splitting we turned clause
splitting off for all strategies. Clause splitting introduces
additional (per proof attempt) propositional literals into split
clauses, potentially reducing the amount of sharing between
proof attempts. Active-only solves more problems and (not
shown in the table) enjoys a slight reduction in solving times
in cases where persistent grounding is not used to solve the
problem. Turning clause splitting off solves fewer problems
but is nicely complementary (solving 5 problems uniquely).

In summary, the persistent grounding method can drastically
speed up proof search when it finds a proof but it generally
adds a noticeable overhead. Overall, we solve 12 problems
with variants of persistent grounding that we were unable to
solve without it. The main observation is that it is possible
to prove more by sharing information between proof attempts
than simply running the union of proof attempts separately but
more work is required to make this approach efficient.

IV. REFLECTION AND FUTURE WORK

We describe our initial efforts transforming VAMPIRE to
a multi-threaded architecture and show how this new shared
memory architecture can easily support methods for clause
sharing. Whilst the concepts involved are straightforward, the
engineering effort required to transform a mature codebase
from a process-based single memory architecture to a thread-
based shared-memory one is large. We have described our
experience for others. Our general findings are:

1) It is more important to find a clean way to separate
data and isolate points of sharing than it is to intro-
duce “clever” fine-grained synchronisation. This ensures
that debugging is manageable. We achieved a lot with
thread_local and atomic.

2) In a large codebase like VAMPIRE there are tens or
hundreds of little bottlenecks rather than few big ones
and they interact in complex ways. Simply optimising
one bottleneck rarely gives overall gains, improvements
must be more architecturally-focussed.

3) Portfolio strategies are typically very short (often <1s)
so “small” performance hits can have a large impact.
Work is required to make portfolios robust to this setting.

The new shared persistent grounding method gave lacklustre
results but only represents a first step in a number of oppor-



tunities presented by the new architecture. Directions we plan
to pursue in the future include:

o Extending the shared signature. Currently, if two proof

attempts introduce a definition for the same subformula
this will be added to each local extended signature and the
overlap will not be shared. A shared definition manager
could increase the size of the shared signature, increasing
the opportunity for cooperation.

As originally proposed in [21], sharing the SAT solver
used for clause splitting in AVATAR. Within a single
proof attempt, this SAT solver is used to enumerate sub-
problems. When shared, it can share information about
previously proved sub-problems between proof attempts
(similar to sharing learned clauses in parallel SAT [2]).
Sharing simplification mechanisms (and associated data
structures e.g. term indices). VAMPIRE contains a number
of mechanisms for removing redundant parts of the search
space. By sharing these mechanisms we can import
information from other proof attempts that makes the
current problem easier.

Other clause sharing mechanisms. Whilst sharing many
clauses risks proof attempts converging (undoing the
complementary power), we can explore methods that aim
to identify useful clauses to share. A fashionable approach
would be to employ machine learning techniques to learn
which clauses are good to share. Alternatively, we could
take inspiration from SAT’s lazy clause exchange [33]
where clauses are only shared if useful locally. Finally,
it is likely that not all clauses will be equally useful to
all other proof attempts, which suggests a setting where
clauses are pulled rather than pushed based on a local
assessment of usefulness.
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