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Abstract. We present a prototype of a neurally-guided automatic theo-
rem prover for first-order logic with equality. The prototype uses a neural
network trained on previous proof search attempts to evaluate subgoals
based directly on their structure, and hence bias proof search toward
success. An existing first-order theorem prover is employed to dispatch
easy subgoals and prune branches which cannot be solved. Exploration
of the search space is asynchronous with respect to both the evaluation
network and the existing prover, allowing for efficient batched neural net-
work execution and for natural parallelism within the prover. Evaluation
on the MPTP dataset shows that the prover can improve with learning.
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1 Introduction

Recent advances in neural network systems allow for processing graph-structured
data in a neural context. Graphs are a natural representation for logical formu-
lae as found in automatic theorem provers (ATPs), suggesting a new breed of
neural ATP in which proof search is guided by a neural black-box acting as
“mathematician’s intuition”. However, in practice there are several implementa-
tion issues [31] which must be avoided in order for neural systems to integrate
with efficient traditional ATPs:

1. Proof state in such systems may be of impractical size, such as in saturation-
based provers, leading to training data which is impractical to learn from and
slow to evaluate. In a saturation context, the size of the current proof state
may be many times the size of the eventual proof: while neural networks are
in principle capable of processing large amounts of data, throughput suffers
and scalability is a concern.

2. Data structures employed may be very opaque or “unnatural”, containing
artifice designed for efficiency rather than natural comprehension by a neural
network.

3. Systems may be very sensitive to latency, which can result in the intro-
duction of neural guidance systems crippling prover throughput and hence
performance.



Attempting to solve these issues with a novel prover architecture, and exploring
several options to improve overall efficiency, the prototype system Lerna1 takes
an alternative step toward useful neural automatic theorem provers.

2 Background

We assume basic familiarity with first-order logic, theorem proving, and neural
networks [13].

2.1 Logic and Theorem Proving

First-Order Logic Lerna works with formulas in standard first-order logic with
equality. Terms t and formulas φ are recursively defined as follows

t = x | f (t1, . . . , tn) | c
φ = > | ⊥ | t1 = t2 | p (t1, . . . , tn) | φ1 ⇒ φ2 | φ1 ≡ φ2 | ¬φ |

φ1 ∧ . . . ∧ φn | φ1 ∨ . . . ∨ φn | ∀x.φ | ∃x.φ

where x is a variable, f is a n-ary function symbol, c is a constant, and p is a
n-ary predicate symbol. Their meaning is defined as usual.

Automatic Theorem Provers An automated theorem prover (ATP) is a sys-
tem able to automatically establish whether a formula (in first-order logic) is
satisfiable or unsatisfiable; although, given the undecidability of this problem,
ATPs may also return unknown. Both saturation-based provers (e.g. E [37],
iProver [21], Vampire [33]) and SMT solvers (e.g. CVC4 [6] and Z3 [4]) utilise
efficient proof calculi combined with highly-configurable search routines in order
to explore a large search space efficiently.

2.2 Machine Learning and Theorem Proving

Despite the efficiency of modern ATP systems, they can still spend time exploring
areas that a human mathematician would discard, and tuning such systems is,
in general, extremely difficult [32]. This has led to the application of machine-
learning techniques, with the eventual aim of an “intelligent” theorem prover
able to learn from past experience to develop an intuition, discard uninteresting
search space, and tune performance in a more principled way.

Previous work has focussed on premise selection [14,23,43,45], static strategy
selection [3,25,24], dynamic (run-time) strategy selection [30] and more recently,
direct proof guidance [44,16,17,15,26]. Proof guidance typically involves a form
of machine-learned heuristic which biases proof search in some way, allowing the
prover to avoid parts of the search space deemed uninteresting by the heuristic.

1 Learning to Reason with Neural Architectures. Lerna is also the lair of the myth-
ical many-headed beast Hydra. Source code available at https://github.com/

MichaelRawson/lerna.

https://github.com/MichaelRawson/lerna
https://github.com/MichaelRawson/lerna


Work on integrating machine-learned heuristics into automatic theorem provers
has relied on hand-engineered features [44,16,17] or other embedding meth-
ods [15,20], which have the advantage of simplicity and relative efficiency, but do
not fully encode the syntactic structure of proof state and therefore lose infor-
mation. By contrast, a neural method which takes into account all information
(as utilised in this work) should allow for greater precision in proof guidance
systems. Deep Network Guided Proof Search (DNGPS) [26] is an example of
previous work in this area, which integrated a deep neural guidance system into
the saturation-based prover E [37]. DNGPS achieved successful results, but suf-
fered from the latency introduced into the system by the neural heuristic: despite
processing only a reduced amount of the available proof state, the reduction in
throughput necessitated a two-phase approach in which the prover was neurally-
guided in the first phase, before falling back to traditional proof search in the
second.

rlCoP The rlCoP system [17] is a connection-based reinforcement-learning prover
which is not presently neurally-guided, but takes a similar approach to that taken
in this paper and achieves impressive results.

Neural Networks for Formulae Neural networks are well-known tools for super-
vised learning [13], and combined with trainable convolution/pooling operators
are suitable for processing large-scale data such as images [22].

Processing structured data such as logical formulae is a relatively new domain
for neural networks. Some work attempts to use unstructured representations of
such formulae, such as text, or build entirely-new models for a specific logic [7],
whereas others attempt to re-use neural techniques for generic structures such
as trees [2]. A promising direction in this area is recent research on neural meth-
ods working with graphs [5,19,36], which have already been applied to premise
selection [45]. Graph neural networks tend to include network layers inspired
by convolution operators in image-processing networks, combining information
from neighbouring nodes (pixels) [19].

The MPTP Problem Set For training and evaluation purposes a set of valid
propositions exported from the Mizar Mathematical Library [12] by the MPTP [42]
system are used. Urban et al. [17] took a subset2 of the large M40k problem set
(containing 32,524 problems) and called it M2k (containing 2004 problems).

3 Design

In order to achieve the goal of a neural theorem prover without the disadvantages
associated with neural approaches, a new design of theorem prover is required.
Popular calculi used in existing ATPs tend to be unfriendly to neural guidance.
For such a system, we desire the following from the calculus:

2 https://github.com/JUrban/deepmath/blob/master/M2k_list

https://github.com/JUrban/deepmath/blob/master/M2k_list


1. Proof state must be reasonably-sized. Attempting to evaluate large proof
states structurally requires a lot of computation and resources. Saturation-
based provers can have very large proof states, for example.

2. Evaluation of states must be possible in parallel. Machine-learning algorithms
operate more efficiently in batches. Tree-based approaches (tableau etc.) lend
themselves to this, whereas saturation provers are inherently sequential.

3. Subgoals must be independent and self-contained. If the prover has a notion
of (sub-)goals which must be dispatched (such as in tableau provers), these
should be independent of the rest of the search space, without e.g. unifiers.
Otherwise, the learning system is trying to learn while blind to the context
of the search.

4. Subgoals must be intelligible. Adding “noise” such as clausification obscures
the original intuition behind a goal, at least for human observers. While this
is not necessarily the case for machine-learning algorithms, it seems likely
that removing structure and adding artefacts will reduce model performance.

We therefore implement a refutation prover based on a first-order tableaux cal-
culus without unification, on non-clausal formulae. Each goal in this case is the
set of formulae present on the tableau branch. In this context, proof state is
small (only the current branch), evaluation of states is possible in parallel, each
branch is independent and contains all information required, and all available
structure from the original problem is kept.

3.1 Search

In the calculus (see Section 4) for this prover, there are two branching factors:
each goal has a set of possible inferences, and each inference contains a set of
possible sub-goals. To prove a goal, at least one inference must be proved. To
prove an inference, all the inferences’ sub-goals must be proved (e.g. shown to be
unsatisfiable). A simple optimisation is that sub-goals may be shared between
inferences, so search becomes a directed acyclic graph, alternating between goals
and inferences (illustrated in Fig. 1).

Goal

Inference Inference

Goal Goal Goal

Fig. 1: Search in the Lerna system,
showing shared sub-goals.

Now the search graph can be ex-
plored: in each step, a leaf (goal) node
is selected for expansion, and all re-
sulting inferences and sub-goals are
added to the graph. If a goal has no
possible inferences, it is satisfiable and
can be removed from the search space.
On the other hand, if a goal is triv-
ial (i.e. contains a contradiction), it
is unsatisfiable and can be marked as
proven. This idea is lifted to infer-
ences: if an inference contains any sat-
isfiable sub-goal, it too is satisfiable, whereas if an inference contains all unsatis-
fiable goals, it is unsatisfiable. Proof search continues until the timeout is reached
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Fig. 2: Illustrating information-flow in the system.

or the root goal is shown to be (un-)satisfiable. In order to dispatch trivial sub-
goals quickly, an existing fast oracle ATP is used (see Section 5). This may mark
goals as (un-)satisfiable, at which point no further exploration is required.

Search is biased by heuristic evaluation. The neural heuristic function (see
Section 6) evaluates each goal and assigns a score corresponding to whether the
network believes that the goal is satisfiable or unsatisfiable. In order to balance
exploitation of promising directions and exploration of all parts of the search
space, a principled UCT-based search algorithm is used, as in MonteCoP [8]. At
each sub-goal g, the prover chooses the inference i with subgoals s according to

max
i∈g

min
s∈i

(score(s))︸ ︷︷ ︸
exploitation

+ c×

√
ln visits (g)

visits (i)︸ ︷︷ ︸
exploration


where score gives the heuristic score, visits gives the total number of visits to
that node so far, and c is the exploration parameter (theoretically

√
2). The sub-

goal with the minimal score is then selected: this prioritises subgoals considered
possibly satisfiable by the heuristic, as satisfiable subgoals allow large parts of
the search space to be pruned.

3.2 Architecture and Prototype Implementation

The system aims to consume all available CPU and GPU resources as efficiently
as possible. To that end, proof search is asynchronous: the search algorithm
generates new sub-goals, which are placed on two separate queues: one for the
oracle ATP, another for heuristic evaluation. Proof search then continues else-
where, while the oracle ATP is called in parallel on each sub-goal (consuming
all available CPU) while the heuristic consumes batches of subgoals, efficiently
utilising the available computational resource. As information flows backwards
from these processes, the search process updates its information about a given
sub-goal and propagates that information upwards to the sub-goal’s parent in-
ferences, to influence future proof search: see Fig. 2.

The prototype implementation (minus the heuristic) is currently just under
3,000 lines of Rust, not including the TPTP format parser or the implementation
of perfect sharing. Python 3 was used for the heuristic due to the large number of
libraries available for neural network implementation in Python. The heuristic
is implemented as a server, communicating with the main prover via a TCP
socket. In principle this allows for the heuristic to be a shared resource with a
centralised heuristic server, or a load-balanced cluster.



contradiction

φ,¬φ, Γ

equal
t = s, φ [t/s] , Γ

t = s, φ, Γ

implies
¬φ, ψ, Γ
φ⇒ ψ, Γ

equivalent
¬φ,¬ψ, Γ φ, ψ, Γ

φ ≡ ψ, Γ

conjunction
φ1, φ2, . . . , φn, Γ

φ1 ∧ φ2 ∧ . . . ∧ φn, Γ

disjunction
φ1, Γ φ2, Γ . . . φn, Γ

φ1 ∨ φ2 ∨ . . . ∨ φn, Γ

instantiation
∀x1, x2, . . . xn.φ[f(x1, x2, . . . xn)/x], ∀x.φ, Γ

∀x.φ, Γ

non-empty
φ[k/x], Γ

∀x.φ, Γ

exists
φ[k/x], Γ

∃x.φ, Γ

Fig. 3: A complete inference system for Lerna. Rules for negation are as usual
and not shown here for brevity. In rule instantiation, f is a function symbol of
arity n in the conclusion’s signature and x1 . . . xn are fresh for the conclusion. In
rules non-empty and exists, k is fresh for the conclusion. φ[t/s] is a capture-
avoiding substitution replacing t for s in φ.

4 Calculus

The proof calculus used in the above architecture may be extremely general: in
fact, any function from goals to a finite set of possible inferences (themselves
finite sets of sub-goals) will suffice, as long as each goal remains independent of
any other such that the heuristic function can process all available information.
If the inference system is complete, there are no additional constraints such as
orderings or fairness to ensure the completeness of the prover, as the balanced
search algorithm (see Section 3) will ensure this.

Lerna presently implements a refutation tableaux calculus [35] without uni-
fication. The calculus described is deliberately näıve in order to easily satisfy the
design constraints given above, but may be replaced by a stronger calculus in
the future. A näıve calculus is not necessarily a problem as the heuristic should
select promising areas to explore and ignore uninteresting sub-goals. However, a
more efficient calculus would improve performance where the heuristic fails.

Refutation Tableaux In order to show a conjecture C from a set of axioms Ai,
it suffices to negate C and then show that the resulting conjunction A1 ∧ A2 ∧
. . . ∧ ¬C is unsatisfiable. A set of inference rules of the form

Γ1 Γ2 . . . Γn

∆

where Γi, ∆ are sets of formulae and ¬ (Γ1 ∧ Γ2 ∧ . . . Γn) ⇒ ¬∆ is an uncon-
ditional tautology, form a refutation calculus. Proofs in this calculus can be
expressed by closed trees of inference rules.



double-neg
φ, Γ

¬¬φ, Γ

conj-assoc
φ ∧ ψ ∧ π, Γ
φ ∧ (ψ ∧ π)

disj-prop
φ, Γ

φ ∨ ⊥, Γ

refl
>, Γ
t = t, Γ

free
φ, Γ

∀x.φ, Γ

Fig. 4: Some simplification rules implemented in Lerna. In rule free, x is free
in φ. Several other rules are implemented.

Complete Inferences The inference rules in Fig. 3 form a complete inference
system, by analogy with a first-order tableaux calculus without unification. A
difference and point of interest is the rule for instantiating universal quantifiers:
instead of instantiating a variable with any possible term t — an infinite space —
it is instantiated with one function symbol (or constant) at a time, quantifying
over new variables as needed. This allows for instantiating any term over multi-
ple inference rules (effectively enumerating the Herbrand universe for the goal),
but without an infinite number of possible inferences at any point. Equality is
handled by a rule rewriting classes of equal ground terms. Both of these rules
are complete yet inefficient, but both are likely to be used only a few times in
order to provide enough of a “hint” to the oracle system for it to find a proof.

Weakening A weakening rule is an important part of Lerna’s calculus, since the
instantiation and equal rule can produce a large number of formulae, some of
which must be removed to help the oracle to prove the goal. Each application of
the rule removes some amount of information from the goal in order to simplify
it — this is sound and corresponds to removing an axiom from proof search. The
rule is merely

weaken
Γ

φ, Γ

Simplifications Before each inferred goal is added to proof search, it is simplified,
removing tedious inferences such as double-negation elimination and generally
reducing the search space. Fig. 4 gives example simplification rules.

5 Oracle

One problem with the calculus as described is that proofs can be quite lengthy,
even if the goal is relatively trivial. To rectify the situation, new goals generated
by ongoing proof search are enqueued for attempted proof by an existing oracle
ATP system, as described in Section 3. In our prototype implementation we use
the mature Z3 SMT solver [4], which supports quantified first-order logic via a
combination of decision procedures for decidable fragments (such as the Bernays-
Schönfinkel class of formulae), and heuristic quantifier instantiation routines [11].
Z3 is attractive for this application due to its low startup times and its ability
to produce both satisfiable and unsatisfiable results.



Lerna uses Z3 as an external system (it could be replaced by an alternative
ATP), running it with its Model-Based Quantifier Instantiation heuristic for
20 milliseconds. This was chosen as the shortest time in which the oracle can
dispatch a reasonable amount of trivial goals (and in fact Z3 is so strong it
dispatches some goals immediately: see Section 7). Longer oracle runtimes might
produce better performance in future, but for this work longer runtimes begin
to conflate the performance of the oracle and the performance of the system as
a whole. This application is unusual for ATP systems — very short runtimes,
and a mix of true and false problem statements.

Acting as a Preprocessor Lerna might also be seen as an intelligent preprocessor
for existing ATPs in this setting: existing theorem provers are known to be
sensitive to small changes in their input [40], and generally make little attempt
to split their input into smaller sub-goals, for parallelism [41] or otherwise. The
system can therefore act as an adaptor for any existing ATP, adding parallelism
opportunities and “smoothing out” sensitivity to input syntax.

6 Learned Heuristic

A suitable heuristic function for the system must predict a value between 0 and
1 for a given formula F , where 0 represents a satisfiable goal and 1 represents
unsatisfiability, based on a set of tagged formulae seen in previous proof search.
Although the data is collected by running the system itself and might be consid-
ered reinforcement learning, for this approach data collection and learning were
considered separately and hence forms a classic supervised-learning problem.

6.1 Data Collection

A large dataset of satisfiable and unsatisfiable goals were collected by running
the unguided prover on the M40k dataset for 10 seconds. As soon as the prover
determines the satisfiability of any sub-goal, the formula it represents and its
status is recorded. This resulted in 18,340 unsatisfiable examples and 1,845,267
satisfiable examples, occupying 6GB of disk space. The dataset is very imbal-
anced (due to a combination of weakening rules producing a large number of
trivially-satisfiable examples, and to immediate prover termination after the goal
is shown to be unsatisfiable), at a ratio of around 100:1.

6.2 Translation to Graphs

Wang et al. [45] give a translation from higher-order formulae to directed graphs,
and a similar scheme is used here. Constants, function symbols, predicate sym-
bols, and bound variables are given their own node. Applications of functions
and predicates to arguments are represented as an “application node” with two
children: the symbol node and an “argument list” node representing the list
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Fig. 5: The translation process for ∀x. [p (f(c), x) ∧ ¬ (f(c) = d)] to a graph, as
seen by the neural network.

of arguments. Propositional connectives and equality have the obvious repre-
sentation, while quantifiers have two children: the variable they bind and their
sub-formula.

To produce an input graph from a formula F , the formula is first parsed into
an abstract syntax tree. Common sub-trees up to α-equivalence [1] are merged,
then the resulting directed acyclic graph has any named-symbol nodes replaced
with an opaque, nameless label such as “predicate” or “variable” — since distinct
symbols remain as distinct nodes under this scheme, no information is lost other
than the natural-language semantics of the symbol name. In practice, undirected
graphs improved model performance so the graph is made undirected before
encoding node labels as one-hot inputs to produce the final input graphs. An
example formula’s translation is shown in Fig. 5.

6.3 Augmentation

One possible solution [39] to the problem of classification on imbalanced domains
is to synthesise new data for under-represented classes — in this case unsatisfi-
able formulae — from existing data by augmenting it. An example is augmenting
image data by cropping, flipping or adding noise to existing images. There are
many possible ways to augment formulae graphs. For this prototype, a simple
approach is taken in which a small number of nonsense formulae are added to
the graph by randomly adding nodes/edges where appropriate. This approach
has the advantage of exposing the network to “noise” such as additional axioms
which might well occur in practice, but if the network is adequately capable of
filtering these then no new formulae are actually seen.



6.4 Neural Architecture

In a typical convolutional network architecture for images [22], there are a se-
ries of filtering stages, followed by a densely-connected neural network. Each
filtering stage intuitively combines data from local features (via convolution),
then reduces the dimensions of the image (via pooling) for the next stage. Graph
neural networks have analogous convolution [19] (combining information from
neighbouring nodes) and pooling [10] (merging nodes to reduce the size of the
input graph) operators. A brief period of experimentation with these operators
yielded the following network architecture, shown in Fig. 6.

1. Input. A graph G consisting of one-hot encoded nodes N and edges E.
2. Embedding. Each node is mapped to an embedding vector of size 64 via a

trained dense embedding.
3. Initial Convolution. 4 convolution layers are applied to the graph with rec-

tified linear activations. This yields a graph of the same size, but with infor-
mation exchanged between nodes.

4. Convolution/Pooling. Similar convolution layers are then passed through
top-k [10] layers, retaining k = 60% of the graph’s nodes. This is repeated 3
times, reducing the size of the graph considerably.

5. Convolution/Max-Pooling. A final convolution layer feeds into a max-pooling
layer, combining all remaining node data into one datum, and dropping the
edge data.

6. Fully Connected. A fully-connected hidden layer with rectified linear activa-
tion halves the input size.

7. Fully Connected/Softmax. A fully-connected final layer outputs two class
labels, with softmax activation.

It is not claimed that this is the optimal configuration, and no grid search has
yet taken place to optimise the network architecture or hyper-parameters. To
reduce over-fitting, dropout [38] is applied in convolutional and fully-connected
layers, p = 0.1.

6.5 Implementation and Training

This architecture was implemented with the PyTorch [29] neural network library,
combined with a graph-processing (“geometric”) extension library, PyTorch Ge-
ometric [9], which together provide facilities for automatic differentiation, GPU-
accelerated training, pre-programmed layers for graph processing, and various
utilities. The dataset is split into a large training set and a smaller test set (200
balanced examples), since unsatisfiable examples were time-consuming to obtain
in this setting. The unsatisfiable training data were then augmented as described
in section 6.3 to produce a balanced total training set of 3.5 million examples.
The network was trained on commodity desktop hardware with a mid-range
GPU 3 for 8 epochs/24 hours, optimising a negative log-likelihood loss function.

3 NVIDIA® GeForce® GT 730.
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Fig. 6: The neural network architecture. Initially there are N nodes, then after
pooling there are P1, P2, P3 nodes. Node-level embedding layers are shown per-
node, graph-level convolutional and pooling layers are shown per-graph.

(a) Output of embedding
layer.

(b) Output after initial
convolutions.

(c) After first pooling.

(d) After second pooling. (e) After max-pooling.

Fig. 7: Computation in the neural network, showing intermediate values involved
in the network (correctly) predicting the satisfiability of an input formula.



Table 1: Accuracy metrics for the neural heuristic.
Metric Score

Accuracy 93.0%
Precision 0.990

Recall 0.884
F1 0.934

Metric Score

True Positive 99
True Negative 87
False Positive 13

False Negative 1

Table 2: Total successful proof attempts on the M2k dataset.
Configuration Proofs

Z3 (10s, as baseline) 1216
Z3 (20ms, as oracle) 711

Lerna, unguided (10s, with oracle) 969
Lerna, guided (10s, with oracle) 1023

6.6 Network Evaluation

The network was evaluated on the balanced test set of 200 examples, as de-
scribed. Various metrics for accuracy are shown in Table 1. While these results
are very promising, it should be emphasised that it is unclear how effective
a train/test split is in this setting (since similar subgoals may occur in both
sets, even with proper data hygiene), and that this network is not attempting
to determine the satisfiability of arbitrary formulae, merely those that occur
in proof attempts on the M40k dataset. The higher precision and lower recall
values are likely an artefact of the augmentation process. However, even with
these caveats, the network performance is surprising and is practically useful for
improving proof search in this dataset.

7 Experimental Results

To show that neural guidance can improve the performance of Lerna the system
was run with and without guidance for 10 seconds on all available CPU cores.
All results were collected on commodity desktop hardware4.

Table 2 shows the total number of theorems proved using various configu-
rations of Z3 and Lerna on the M2k dataset. Z3 ran for a full 10 seconds to
establish baseline performance, then as an oracle for 20 milliseconds to deter-
mine the number of “trivial” problems. Lerna ran on an identical dataset, first
without guidance from the neural heuristic, then with guidance. With neural
guidance Lerna was able to solve an additional 54 problems and overall Lerna
was shown to be complementary to Z3, proving 114 problems that Z3 was unable
to solve on its own, and 40 that neither unguided Lerna nor Z3 could solve.
Conversely, Z3 was able to solve more problems in total, which is unsurprising
given the maturity of the tool. These results show that Lerna is able to learn
from experience and complement an existing ATP.

4 Intel® Core� i7-6700 CPU @ 3.40GHz, 16GB RAM.



8 Future Work

Given the prototype nature of this work, we have included a detailed discussion
on future directions. As Lerna is a very new system, there is likely much to
be gained by simple engineering and tuning: for example, the UCT exploration
parameter c has been left at its theoretical optimum value

√
2, but it is likely that

a higher value will account for neural network inaccuracies and hence improve
performance. Training on, benchmarking with, and optimising for other datasets
(such TPTP or SMT-LIB) is also left as future work.

Proof Search Lerna is well-suited for long-term proof search attempts in math-
ematics, such as those employed in the AIM project [18]: search is stable over
time and does not produce a combinatorial explosion in the same way that some
traditional systems tend to after a short period. Additionally, the amount of in-
formation (“confidence”) in the system grows over time, as a result of a growing
number of oracle invocations and neural network evaluations. Proof search can in
principle be manually inspected more easily than in saturation-based provers to
examine promising subgoals and remove known falsehoods from the search space.
The authors hope to explore applying the system to this interesting domain.

Another future direction for proof search is a principled incomplete mode
where branches deemed sufficiently uninteresting by the heuristic are pruned,
perhaps in response to resource constraints as in limited resource strategies [34].
This approach, while clearly incomplete, would significantly accelerate proof
search in the direction of more promising search within the available resources.

Prover Calculus The calculus currently employed is deliberately näıve and ex-
tensions should be explored. In particular, the simplification routines can be
improved to remove more trivial sub-formulae as, while in general the oracles’
preprocessing will remove these, they serve as noise for the neural network and
might also increase the number of inference steps required to reach a proof. As
one possible view of this approach is as an intelligent preprocessor for an ex-
isting ATP, more aggressive and/or weakening inferences might be included in
the calculus. For instance, prenexing (or conversely miniscoping) formulae can
have a significant effect on proof search for some theorem provers, so including
suitable quantifier-manipulation rules might prove to be a useful extension.

Ideas from other refutation-tableaux calculi could well be suitable for this
system. The authors are attempting to integrate an adapted connection rule
from the non-clausal connection calculus [27], as used in nanoCoP [28], in order
to reduce the number of proof steps required to instantiate universal quantifiers.
Finally, this prover architecture can support other logics without excessive mod-
ification. Given that Z3 is already capable of supporting many theories, such as
arithmetic or datatypes, a many-sorted first order logic such as those described
by SMTLIB or the TFF0 dialect of TPTP seems appropriate.

Oracle While Z3 is a strong theorem prover in its own right and performs well
here, it remains to be seen if it is the best for this application. Other ATPs



(or counter-example-finding systems) should be explored. A portfolio of sev-
eral oracle systems working in tandem might also be considered, although of
course this will eventually retard proof search linearly in the number of systems
present. Reducing the number of oracle invocations is another area for optimisa-
tion. Currently, the system calls an oracle for every new sub-goal generated. It
seems unlikely that the sub-goal is materially easier to dispatch than its parent
(especially in the case of propositional inferences that do not split the goal), so
heuristically or probabilistically removing such subgoals from the oracle’s queue
is a possible area for improvement. Lerna does not currently use any infor-
mation from the oracle beyond its status: using auxiliary information such as
satisfying models or unused formulae could well aid proof search.

Machine-Learned Heuristic Many other graph-based neural architectures are
possible. PyTorch Geometric alone currently includes nearly 40 other graph-
specific neural layers pre-programmed from the literature5. Neural models specif-
ically for theorem proving are relatively under-studied. To combat this, data
used for this paper will be published in the near future so that the machine-
learning community can improve upon our simple models. Different approaches
to formula-to-graph translation, symbol embeddings, data augmentation, and
model integration may also be explored.

9 Conclusions

The introduced prototype Lerna system successfully implements a theorem
prover with a neural heuristic processing the entire proof state, structured as
a graph. After training on data automatically generated by the prover system,
the neural network approach is shown to be practically useful for improving
proof search performance. A number of approaches (batching, oracle invoca-
tions, parallelism) are employed to improve system efficiency. While the proto-
type is not yet a successful state-of-the-art ATP, it has some unique desirable
properties, among them simplicity, parallelism, parametricity with respect to cal-
culus/oracle/heuristic, and introspection of proof state. The general approach is
flexible and presently unexplored.
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