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Abstract. Modern superposition inference systems aim at reducing the
search space by introducing redundancy criteria on clauses and infer-
ences. This paper focuses on reducing the number of superposition in-
ferences with a single clause by blocking inferences into some terms,
provided there were previously made inferences of a certain form per-
formed with predecessors of this clause. Other calculi based on blocking
inferences, for example basic superposition, rely on variable abstraction
or equality constraints to express irreducibility of terms, resulting how-
ever in blocking inferences with all subterms of the respective terms.
Here we introduce reducibility constraints in superposition to enable a
more expressive blocking mechanism for inferences. We show that our
calculus remains (refutationally) complete and present redundancy no-
tions. Our implementation in the theorem prover Vampire demonstrates
a considerable reduction in the size of the search space when using our
new calculus.

Keywords: Saturation · Superposition · Redundancy· Reducibility con-
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1 Introduction

Automated reasoners in first-order logic with equality commonly rely on the
superposition calculus [25,5]. This calculus has been extended with various im-
provements in order to reduce the search space. For instance, avoiding superpo-
sition into variables and ordering literals and clauses are common practices in
modern theorem provers [21,29,34].

To reduce generation of redundant clauses in equational reasoning, the “ba-
sicness” restriction [16] was introduced at the term level. This idea aided, for
example, in finding the proof of the Robbins problem [24]. This restriction blocks
superposition (rewriting) inferences into terms resulting from (quantifier) instan-
tiations, considering such terms irreducible in further proof steps. This approach
was further generalised to block superposition into terms above variable positions
in basic superposition/paramodulation [7,26], while preserving refutational com-
pleteness. However, blocking and applying different rewrite steps among equal
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4 P (g(x, y), f(g(x, b), z))

6 P (g(x, y), f(a, z))5 P (a, f(g(x, b), z)) 7 P (g(x, y), g(x, b))

10 P (a, g(x, b))9 P (a, f(a, z))8 P (a, f(b, z)) 11 P (g(x, y), a)

13 P (a, a)12 P (a, b)

Fig. 1. Possible superposition sequences into 4 .

terms impacts proof search. In this paper, we propose a number of different
ways to block inferences, so that the resulting calculus remains complete. The
effect of these restrictions resembles some strategies from term rewriting, such
as innermost and outermost strategies.

Motivating example. Consider the following satisfiable set C of clauses:

C =
{

1 g(x, b) ≃ a, 2 f(x, b) ≃ x,
3 g(a, x) ≃ x, 4 P (g(x, y), f(g(x, b), z))

}
where x, y are variables, a, b constants, f, g function symbols, and P is a predicate
symbol. In this paper ≃ denotes equality. Figure 1 shows some derivations of
P (a, a) by consecutively superposing into 4 with 1 and 2 . It also shows a
derivation of P (a, b) by superposing into 4 with 1 , then with 3 and 2 . Note
that Figure 1 contains many redundant clauses. For example, 4 is redundant
w.r.t. 6 and 1 , as it is a logical consequence of (smaller) 6 and 1 . Similarly,
7 is redundant w.r.t. 11 and 1 .

Many derivations of Figure 1 could however be avoided by using a rewrite
order between the inferences. For example, a leftmost-innermost rewrite order on
inferences derives 13 along the path 4 – 5 – 9 – 13 . Whenever we would deviate
from the leftmost-innermost rewrite order when rewriting a term t, we enforce the
order by requiring that any term t′ that is to the left of or inside t is irreducible
in further derivations. In other words, we block further inferences with t′. With
such a restriction, we cannot rewrite g(x, y) in clause 6 , as g(x, y) was to the
left of the previously rewritten term f(g(x, b), z). Hence, when using a leftmost-
innermost rewrite upon in Figure 1, 9 is only generated by the derivation path
4 – 5 – 9 . Similarly, 11 cannot be derived from 7 but can be derived from 6 .

Our contributions. We introduce a new superposition calculus that enables
various ways to block (rewrite) inferences during proof search. Key to our cal-
culus are reducibility constraints to restrict the order of superposition inferences



Reducibility Constraints in Superposition 3

(Section 3). Our approach supports and generalizes, among others, the leftmost-
innermost rewrite orders mentioned in the motivating example by means of ir-
reducibility constraints, allowing us to reduce the number of generated clauses.
Furthermore, in our motivating example the derivation 5 – 8 – 12 of Figure 1 is
not needed for the following reason. By superposing into 2 with 3 , we derive
a ≃ b, which makes one of 12 and 13 redundant w.r.t. the other. As 1 was
used to rewrite g(x, b) in Figure 1 and derive 5 , we block superposition into
g(x, b) with all clauses except 1 in further derivations. We express this require-
ment via a one-step reducibility constraint (Definition 1), resulting in the BLINC
– BLocked INference Calculus. As such, BLINC is parameterized by a rewrite
ordering and (ir)reducibility constraints.

We prove 4 that our BLINC calculus is refutationally complete, for which we
use a model construction technique (Section 4) with new features introduced to
take care of constraints. We extend our calculus with redundancy elimination
(Section 5). When evaluating the BLINC calculus implemented in the Vampire
theorem prover, our experiments show that reducibility constraints significantly
reduce the search space (Section 6).

2 Preliminaries

We work in standard first-order logic with equality, where equality is denoted
by ≃. We use variables x, y, z, v, w and terms s, t, u, l, r, all possibly with
indices. A term is ground if it contains no variables. A literal is an unordered
pair of terms with polarity, i.e. an equality s ≃ t or a disequality s ̸≃ t. We write
s ▷◁ t for either an equality or a disequality. A clause is a multiset of literals. We
denote clauses by B,C,D and denote by □ the empty clause that is logically
equivalent to ⊥.

An expression E is a term, literal or clause. We will also consider as ex-
pressions constraints and constrained clauses introduced later. An expression is
called ground if it contains no variables. We write E[s] to state that the ex-
pression E contains a distinguished occurrence of the term s at some position.
Further, E[s 7→ t] denotes that this occurrence of s is replaced with t; when s
is clear from the context, we simply write E[t]. We say that t is a subterm of
s[t], denoted by t ⊴ s[t]; and a strict subterm if additionally t ̸= s[t], denoted
by t ◁ s[t]. A substitution σ is a mapping from variables to terms, such that
the set of variables {x | σ(x) ̸= x} is finite. We denote substitutions by θ, σ,
ρ, µ, η. The application of a substitution θ on an expression E is denoted Eθ.
A substitution θ is called grounding for an expression E if Eθ is ground. We
denote the set of grounding substitutions for an expression E by GSubs, that is
GSubs(E) = {θ | Eθ is ground}. We denote the empty substitution by ε.

A substitution θ is more general than a substitution σ if θη = σ for some
substitution η. A substitution θ is a unifier of two terms s and t if sθ = tθ, and
is a most general unifier, denoted mgu(s, t), if for every unifier η of s and t, there

4 detailed proofs are in the full version of this paper [15]
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exists a substitution µ s.t. η = θµ. We assume that the most-general unifiers of
terms are idempotent [2].

A binary relation → over the set of terms is a rewrite relation if (i) l→ r ⇒
lθ → rθ and (ii) l→ r ⇒ s[l]→ s[r] for any term l, r, s and substitution θ. The
reflexive and transitive closure of a relations → is denoted by →∗. We write ←
to denote the inverse of →. Two terms are joinable, denoted by s ↓ t, if there
exists a term u s.t. s→∗ u←∗ t. A rewrite system R is a set of rewrite rules. A
term l is irreducible in R if there is no r s.t. l→ r ∈ R. Joinability w.r.t. R will
be denoted by s ↓R t. A rewrite ordering is a strict rewrite relation. A reduction
ordering is a well-founded rewrite ordering. In this paper we consider reduction
orderings which are total on ground terms, that is they satisfy s ▷ t ⇒ s ≻ t;
such orderings are also called simplification orderings.

We use the standard definition of a bag extension of an ordering [12]. An
ordering ≻ on terms induces an ordering on literals, by identifying s ≃ t with
the multiset {s, t} and s ̸≃ t with the multiset {s, s, t, t}, and using the bag
extension of ≻. We denote this induced ordering on literals also with ≻. Likewise,
the ordering ≻ on literals induces the ordering on clauses by using the bag
extension of ≻. Again, we denote this induced ordering on clauses also with ≻.
The induced relations ≻ on literals and clauses are well-founded (resp. total) if
so is the original relation ≻ on terms. In examples used in this paper, we assume
a KBO simplification ordering with constant weight [19].

Many first-order theorem provers work with clauses [29,34,21]. Let S be a
set of clauses. Often, systems saturate S by computing all logical consequences
of S with respect to a sound inference system I. The process of saturating S is
called saturation. An inference system I is a set of inference rules of the form

C1 . . . Cn ,
C

where C1, . . . , Cn are the premises and C is the conclusion of the inference.
The inference rule is sound if its conclusion is the logical consequence of its
premises, that is C1, . . . , Cn |= C. The inference is reductive w.r.t. an ordering
≻ if C ≻ Ci, for some i = 1, . . . , n. An inference system I is sound if all its
inferences are sound. An inference system I is refutationally complete if for
every unsatisfiable clause set S, there is a derivation of the empty clause in I.
An interpretation I is a model of an expression E if E is true in I. A clause
C that is false in an interpretation I is a counterexample for I. If a clause set
contains a counterexample, then it also contain a minimal counterexample w.r.t.
a simplification ordering ≻ [6].

3 Reducibility Constraints

This section presents a new blocking calculus, called BLINC (BLocked INference
Calculus). This calculus uses specific constraints to block inferences.

Definition 1 (Constraints). Let l be a non-variable term and r a term. We
call the expression l ⇝ r a one-step reducibility constraint, and the expression
↓l an irreducibility constraint. A constraint is one of the two. ⊓⊔
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l ≃ r ∨ C | Π s[u] ▷◁ t ∨D | Γ
(Sup⋑)

(s[r] ▷◁ t ∨ C ∨D)σ | ∆
where

(1) u is not a variable,
(2) σ = mgu(l, u),
(3) tσ ̸⪰ s[u]σ, rσ ̸⪰ lσ,
(4) ∆ = Γσ ∪ {lσ ⇝ rσ}

∪ B⋑(s[u]σ, lσ),
(5) the conclusion is not blocked,

s ̸≃ t ∨ C | Γ
(EqRes⋑)

Cσ | Γσ
where

(1) σ = mgu(s, t),
(2) the conclusion is not blocked,

s ≃ t ∨ u ≃ w ∨ C | Γ
(EqFac⋑)

(s ≃ t ∨ t ̸≃ w ∨ C)σ | Γσ
where

(1) σ = mgu(s, u),
(2) tσ ̸⪰ sσ, wσ ̸⪰ tσ,
(3) the conclusion is not blocked.

Fig. 2. The BLINC calculus

Now let us define the semantics of these constraints.

Definition 2 (Satisfied Constraints, Violated Constraints). Let R be a
rewrite system. We say that R satisfies l⇝ r if l→ r ∈ R and satisfies ↓l if l is
irreducible in R. We say that R violates a constraint if it does not satisfy it. ⊓⊔

An expression C | Γ is a constrained clause, where C is a clause and Γ a finite
set of constraints. A constrained clause C | Γ is true iff C is true. We denote
constrained clauses C, D, possibly with indices.

Definition 3 (Blocked Constrained Clause, Blocked Inference). Let
C = C | Γ be a constrained clause. We call the constraint l ⇝ r ∈ Γ active in
C if s ≻ l for some term s in C. Likewise, we call ↓l ∈ Γ active in C if s ≻ l for
some term s in C. We call C blocked if either it contains two active constraints
l ⇝ r and l ⇝ r′ such that r and r′ are not unifiable, or it contains two active
constraints l⇝ r and ↓l. An inference is blocked if its conclusion is blocked. ⊓⊔

Our superposition calculus BLINC uses constrained clauses and bans inferences
with blocked conclusions. For that, we attach constraints to clauses, as follows.

Definition 4 (S-ordering). An S-ordering is a partial strict well-order ⋑ on
terms that is stable under substitutions. We use the function B⋑ defined below
to attach constraints to clauses.

B⋑(s, l) := {↓u | u ⋐ l, u is non-variable and u ⊴ s} ⊓⊔

BLINC is shown in Figure 2. We assume a literal selection function satisfying
the standard condition on ≻ and underline selected literals. The next example
illustrates blocked BLINC inferences.

Example 1. We use the order ≻ on terms as the S-ordering. A Sup⋑ inference
of BLINC into 4 with 2 from our motivating example from page 2 results in
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4 P (g(x, y), f(g(x, b), z))

6 P (g(x, y), f(a, z))5 P (a, f(g(x, b), z)) 7 P (g(x, y), g(x, b))

10 P (a, g(x, b))9 P (a, f(a, z))8 P (a, f(b, z)) 11 P (g(x, y), a)

13 P (a, a)12 P (a, b)

Fig. 3. Inferences from Figure 1 with blocked inferences in BLINC removed. Figure 3
illustrates the effectiveness of reducibility constraints when compared to Figure 1: we
removed arcs corresponding to inferences blocked when the order ≻ is used as the S-
ordering. Of the 14 original inferences as in Figure 1, only 7 are not blocked in Figure 3.

f(x, b) ≃ x P (g(x, y), f(g(x, b), z))
.

P (g(x, y), g(x, b)) | {↓b, ↓g(x, y), ↓g(x, b), f(g(x, b), b)⇝ g(x, b)}
Note that the conclusion is a constrained variant of clause 7 of Figure 1. Now,
the superposition of 1 into g(x, y), and hence the following variant of clause 10

of Figure 1, is blocked:

g(x, b) ≃ a P (g(x, y), g(x, b)) | {↓g(x, y), ↓g(x, b), f(g(x, b), b)⇝ g(x, b)}
P (a, g(x, b)) | {↓b, ↓g(x, b), f(g(x, b), b)⇝ g(x, b), g(x, b)⇝ a}

Note that the conclusion is blocked by the active constraints g(x, b) ⇝ a and
↓g(x, b). Figure 3 shows the modified version of Figure 1, when using the inference
rules of BLINC to generate fewer clauses than in Figure 1. ⊓⊔

Example 2. Consider now a sequence of superposition inferences into 4 by 1

and then by 3 . That is, we consider the derivation 4 – 5 – 8 from Figure 1 as:

g(a, x) ≃ x

g(x, b) ≃ a P (g(x, y), f(g(x, b), z))

P (a, f(g(x, b), z)) | {↓b, g(x, b)⇝ a}
P (a, f(b, z)) | {↓a, ↓b, g(a, b)⇝ a, g(a, b)⇝ b}

The resulting conclusion is constrained and blocked, as we have two active con-
straints g(a, b)⇝ a and g(a, b)⇝ b. As such and as shown in Figure 3, clause 8

(and also clause 12 ) will not be generated by BLINC, in contrast to Figure 1. ⊓⊔

4 Model Construction in BLINC

This section shows completeness of BLINC, with a proof which resembles that of
Duarte and Korovin [13]. We start by adjusting terminology to our setting and
discussing key differences compared with standard completeness proofs.
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Definition 5 (Closure). Let C = C | Γ be a constrained clause and θ a sub-
stitution. The pair C · θ is called a closure and is logically equivalent to Cθ. A
closure (C | Γ ) · θ is ground if Cθ | Γθ is ground, in which case we say that θ is
grounding for C | Γ and call (C | Γ ) · θ a ground instance of C | Γ .

The set of all ground instances of C is denoted C∗. We will denote ground
closures by C,D, maybe with indexes. If N is a set of constrained clauses, then
N∗ is defined as

⋃
C∈N C∗. If C ≻ D, we write C | Γ ≻ D | ∆. Similarly, if

Cθ | Γθ ≻ Dσ | ∆σ, then we write (C | Γ ) · θ ≻ (D | ∆) · σ. ⊓⊔

A crucial part in the completeness proof of BLINC is reducing minimal coun-
terexamples to smaller ones. However, due to blocked inference conditions (5) in
Sup⋑, (2) in EqRes⋑, and (3) in EqFac⋑, such a counterexample reduction may
not be possible. We solve this problem in three steps:

1. Given a saturated set of clauses N , we construct a model for a subset of its
closures U(N) ⊆ N∗, namely, for so-called unblocked closures (Definition 6).

2. We show that if the empty clause □ is not in U(N), then the model satisfies
each closure in U(N) (Theorem 1). That is, we show that counterexamples
in U(N) can be reduced to smaller counterexamples that are also in U(N).
This avoids the aforementioned problem with blocked inferences.

3. We then show that the model also satisfies all closures in N∗ (Theorem 2).

Definition 6 (Partial/Total Models, Blocked/Productive Closures).
Let N be a set of constrained clauses. We will define, for every closure C ∈ N∗,
the rewrite system RC and refer to all such rewrite systems as partial models.
The definition will be made by induction on the relation ≻ on ground closures.
In parallel to defining RC, we also define the rewrite system

R≺C =
⋃
D≺C

RD.

The partial model RC will either be the same as R≺C, or obtained from R≺C by
adding a single rewrite rule. In the latter case will call the closure C productive.

The reduced closure of a ground closure C ·θ is defined as the closure C ·θ′ such
that for each variable x occurring in C, we have that θ′(x) is the normal form
of θ(x) in R≺C·θ. We call a ground closure reduced if its reduced form coincides
with this closure. Let C · θ be a ground closure and C · θ′ be its reduced form. We
say that C · θ is blocked w.r.t. N if R≺C·θ′ violates some constraint in Γθ′ that
is active in Cθ′. A closure that is not blocked w.r.t. N is called unblocked w.r.t.
N . Let C = (l ≃ r ∨ C ′) | Γ . The closure C · θ is called productive if

(i) C · θ is false in R≺C·θ,
(ii) lθ ≃ rθ is strictly maximal in Cθ,
(iii) lθ ≻ rθ,
(iv) C ′θ is false in R≺C·θ ∪ {lθ → rθ},
(v) lθ is irreducible in R≺C·θ,
(vi) C · θ is unblocked w.r.t N .
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Now we define

RC·θ =

{
R≺C·θ ∪ {lθ → rθ}, if C · θ is productive;
R≺C·θ, otherwise.

R∞ =
⋃

C∈N∗ RC

Finally, we call R∞ the total model and define U(N) as the set of all closures in
N∗ unblocked w.r.t. N . ⊓⊔

This construction has two standard properties that we will use in our proofs:

1. RC |= C if and only if for all D ≻ C we have RD |= C, if and only if R∞ |= C.
2. R∞ is non-overlapping, terminating and hence canonical.

The crucial difference between our model construction and the standard model
construction is the condition on productive closures to be unblocked w.r.t. N .
Let us now define our redundancy notions based on U(N) as follows.

Definition 7 (Redundant Clause/Inference). A constrained clause C is
redundant w.r.t. N if every ground instance of C is either blocked w.r.t. N , or
follows from smaller ground closures in U(N). An inference C1, ..., Cn ⊢ D is
redundant w.r.t. N if for each θ grounding for C1, . . . , Cn and D either

(i) one of C1 · θ, ..., Cn · θ,D · θ is blocked w.r.t. N , or
(ii) D · θ follows from the set of ground closures
{C | C ∈ U(N) and Ci · θ ≻ C for some i}. ⊓⊔

Definition 8 (Saturation up to Redundancy). A set of constrained clauses
N is saturated up to redundancy if, given non-redundant constrained clauses
C1, ..., Cn ∈ N , any BLINC inference C1, ..., Cn ⊢ D is redundant w.r.t. N . ⊓⊔

From now on, let N be an arbitrary but fixed set of constrained clauses. We will
formulate a sequence of lemmas used in the completeness proof, whose proofs
are included in the the full version of the paper [15]. The following lemma is used
to show that unary inferences with an unblocked premise result in an unblocked
conclusion.

Lemma 1. (Unblocking Inferences) Suppose C,D ∈ N and θ and σ are
substitutions irreducible in R≺C·θ and in R≺D·σ, respectively. If C · θ ≻ D · σ,
Γθ ⊇ ∆σ and C · θ is unblocked w.r.t. N , then D · σ is unblocked w.r.t. N .

We next prove that the conclusion of a blocked inference is redundant, that is,
the conditions that block inferences in BLINC are correct.

Lemma 2. (Redundancy with Blocked Clauses) Let C be a constrained
clause. If C is blocked, then all ground instances of C are blocked w.r.t. N .

The next lemma resembles the standard lemma on counterexample reduction.
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Lemma 3 (Unblocked Sup⋑). Suppose that (a) D = s ▷◁ t ∨ D | Γ is a
constrained clause in N , (b) D · θ a ground closure unblocked w.r.t. N , (c) θ is
irreducible in R≺D·θ, (d) sθ ⪰ tθ, (e) sθ is reducible in R≺D·θ.

Then there exist a constrained clause (l ≃ r ∨C | Π) ∈ N , a Sup⋑-inference

l ≃ r ∨ C | Π s[u] ▷◁ t ∨D | Γ
(Sup⋑)

(s[r] ▷◁ t ∨ C ∨D)σ | ∆

and a substitution τ such that (i) Dστ = Dθ, (ii) l ≃ r∨C | Π ·στ is productive,
and (s[r] ▷◁ t ∨ C ∨D)σ | ∆ · στ is unblocked w.r.t. N .

We are now ready to show completeness of BLINC, starting with the following.

Theorem 1 (Model of U(N)). Let N be saturated up to redundancy and
□ /∈ N . Then for each C ∈ U(N) we have RC |= C.

When RC |= C, we will simply say that C is true. Note that this implies that
RD |= C for all D ⪰ C, and also R∞ |= C. We say that C is false if it not true.

Here, we only prove a few representative cases and refer to [15] for complete
argumentation. Assume, by contradiction, that U(N) contains a ground closure
C such that RC ̸|= C. Since ≻ is well-founded, then N∗ contains a minimal
unblocked closure C · θ such that RC·θ ̸|= C · θ.

Case 1. C is redundant w.r.t. N .

Proof. The closure C·θ is unblocked, so it follows from smaller closures C1, . . . , Cn
in U(N). Then there is some Ci which is false too, and we are done. ⊓⊔

Case 2. C contains a variable x such that xθ is reducible in R≺C·θ.

Proof. The reduced closure C · θ′ of C · θ is unblocked w.r.t. N , so C · θ′ ∈ U(N).
Since xθ ≻ xθ′ and for all variables y different from x we have yθ ⪰ yθ′, we have
C · θ ≻ C · θ′, then C · θ′ is true. Since yθ = yθ′ is true in R∞ for all variables y,
we also have that C · θ′ is equivalent to C · θ in R∞, hence C · θ is true and we
obtain a contradiction. ⊓⊔

Case 3. There is a reductive inference C1, . . . , Cn ⊢ D with C1, . . . , Cn ∈ N which
is redundant w.r.t. N such that (a) {C1 · θ, . . . , Cn · θ} ⊆ U(N), (b) D · θ is
unblocked w.r.t. N , (c) C · θ = max{C1 · θ, . . . , Cn · θ}, and (d) D · θ |= C · θ.

Proof. D · θ is implied by ground closures in U(N) smaller than C · θ. These
ground closures are then true in RC·θ, so D · θ is true, and hence C · θ is also true
in RC·θ, contradiction. ⊓⊔

Case 4. None of the previous cases apply, and a negative literal s ̸≃ t is selected
in C, i.e. C = s ̸≃ t ∨ C | Γ .

Proof. C · θ is false in RC·θ, so sθ ↓RC·θ tθ. W.l.o.g., assume sθ ⪰ tθ.

Subcase 4.1. sθ = tθ.

Proof. Then s and t are unifiable. Consider the EqRes⋑ inference
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s ̸≃ t ∨ C | Γ
Cσ | Γσ

where σ = mgu(s, t). Take any ground instance D · ρ = (Cσ | Γσ) · ρ such that
σρ = θ; by the idempotence of σ, we have D · ρ = D · θ. Clearly, C · θ ≻ D · θ and
D · θ implies C · θ. As C · θ ≻ D · θ and Γσρ = Γσθ = Γθ, Lemma 1 implies that
D · θ is unblocked w.r.t. N . By Case 1, D is not redundant, hence D ∈ N . But
then D · θ is a false closure in U(N), which is strictly smaller than C · θ, so we
obtain a contradiction. ⊓⊔

Subcase 4.2. sθ ≻ tθ.

Proof. By conditions on the literal selection, we assume that sθ ≻ tθ is maximal
in C. By Lemma 3, there is a Sup⋑ inference into sθ with a ground closure
such that the result C′ · θ is unblocked w.r.t. N . This closure is of the form
D · θ = (l ≃ r ∨D | Π) · θ and we have the following Sup⋑ inference

l ≃ r ∨D | Π s[l′] ̸≃ t ∨ C | Γ
(s[r] ̸≃ t ∨ C ∨D)σ | ∆

where σ = mgu(l, l′). Note that C′ = s[r] ̸≃ t ∨ C ∨D and C′ · ρ = C′ · θ. Then,
C ·θ ≻ C′ ·θ and D·θ and C′ ·θ imply C ·θ. Since C′ ·θ is unblocked w.r.t. N , using
Lemma 2, we get that C′ is not blocked w.r.t. N , and condition (5) of Sup⋑ is
satisfied. Similarly to Case 4.1, we have that the conclusion is a smaller false
unblocked closure, so we obtain a contradiction. ⊓⊔

Next we show that for a saturated set of clauses N , if R∞ is a model for U(N),
then it is also a model of N∗, that is, R∞ satisfies also all blocked closures in
N∗. This follows from the next theorem.

Theorem 2 (Model of N∗). Let N be a saturated set of clauses. Every blocked
closure C · θ ∈ N∗ follows from U(N).

Using Theorems 1–2, we obtain completeness of BLINC.

Corollary 1 (Completeness of BLINC). Let N be saturated up to redun-
dancy. If N does not contain □, then N is satisfiable.

We conclude with a remark on constraint inheritance in BLINC. Note that in
the Sup⋑ inference rule of Figure 2, constraints are inherited only from the
right premise. It is possible to block more inferences without losing refutational
completeness of BLINC, by allowing constraint inheritance from the left premise
in the Sup⋑ rule as well. However, we cannot propagate constraints that are non-
active in the left premise, as they may become active in the conclusion, making
the inference blocked. This effect is illustrated in the following example.

Example 3. Consider a superposition into 1 with 3

g(x, b) ≃ a g(a, x) ≃ x

a ≃ b | {↓a, ↓b, g(a, b)⇝ a}
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If b ≻ a, then ↓a is the only active constraint in the conclusion. Consider a
superposition with 4 where constraints are inherited from both premises:

a ≃ b | {↓a, ↓b, g(a, b)⇝ a} P (g(x, y), f(g(x, b), z))

P (g(x, y), f(g(x, a), z)) | {↓a, ↓b, g(a, b) ≃ a, b⇝ a}

In the conclusion, ↓b and b⇝ a are both active, which blocks the inference. ⊓⊔

5 Redundancy Detection in BLINC

In this section we discuss redundancy detection in BLINC. We give sufficient
conditions for a clause to be redundant when inferences of a specific form are
applied. As usual, we call a simplifying inference, or simplification, any inference
such that one of the premises becomes redundant after the conclusion is added
to the current set of clauses. Inference rules whose instances are simplifications
are called simplification rules. When we display a simplification rule, we will
denote clauses that become redundant by drawing a line through them.

Definition 7 gives rise to two kinds of simplification criteria: (i) based on
blocking, and (ii) when one of the premises C ·θ follows from smaller constrained
clauses. The following definition captures the first redundancy criterion.

Definition 9 (Closure/Clause Blocked Relative to Closure/Clause).
A ground closure C is blocked relative to a ground closure D if for every set of
constrained clauses N , if D is blocked w.r.t. N∗, then C is blocked w.r.t. N∗

too. A constrained clause C is blocked relative to a constrained clause D, if every
ground instance of C is blocked relative to some ground instance of D. ⊓⊔

This notion will be used for defining simplification rules. We will next present
sufficient conditions for checking that a constrained clause is blocked relative to
another constrained clause. For example, each ground closure of a clause C | ∅ is
unblocked w.r.t. any set N , hence everything is blocked relative to that ground
closure. Further, each ground closure with a reducible substitution is blocked
relative to its reduced closure.

Definition 10 (Well-Behaved Constrained Clause). Let C = C | Γ be a
constrained clause. We say that C is well-behaved if (i) all constraints in Γ are
active in C, and for each γ ∈ Γ , (ii) if γ = ↓l, then ↓u ∈ Γ for all u ◁ l, and (iii)
if γ = l⇝ r, then ↓u ∈ Γ for all u ◁ l and l contains all variables of r. ⊓⊔

Example 4. The clause P (a, f(b, z)) | {↓a, g(a, b) ⇝ a} is not well-behaved but
P (a, f(b, z)) | {↓a, ↓b, g(a, b) ⇝ a} is. The clause a ≃ b | {↓a, ↓b, g(a, b) ⇝ a} is
not well-behaved since it contains constraints not active in the clause. ⊓⊔

Lemma 4. (Relatively Blocked Well-Behavedness) Let C = C | Γ and
D = D | ∆ be well-behaved constrained clauses, and σ a substitution. Then C is
blocked relative to D if C ≻ Dσ and Γ ⊇ ∆σ.
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In the sequel, we assume that each constrained clause is well-behaved. We next
adjust two standard simplifications within superposition [14], namely demodula-
tion in Theorem 3 and subsumption in Theorem 4. Our analogue of demodulation
is the following special case of Sup⋑ in BLINC:

l ≃ r | ∆ �����C[lσ] | Γ
(Dem⋑)

C[rσ] | Γ
where

(1) lσ ≻ rσ,
(2) C[lσ] ≻ (l ≃ r)σ,
(3) ∆σ ⊆ Γ .

Theorem 3. (BLINC Demodulation) Dem⋑ is a simplification rule. That is,
C[lσ] | Γ is redundant w.r.t. any constrained clause set that contains l ≃ r | ∆
and C[rσ] | Γ .

In addition to simplification rules, we will also consider deletion rules. These
rules delete a (redundant) constrained clause from N provided that N contains
another constrained clause or set of constrained clauses. The below deletion rule
is our analogue of subsumption:

D | ∆ ���C | Γ
(Subs⋑) where

(1) Dσ ⊊ C,
for some substitution σ.

(2) ∆σ ⊆ Γ ,

Theorem 4. (BLINC Subsumption) Subs⋑ is a deletion rule. That is, C | Γ
is redundant w.r.t. any constrained clause set that contains D | ∆.

We also introduce two deletion rules based on properties of the constraints of
a clause. Namely, in Theorem 5 we introduce a deletion rule resembling “basic
blocking” [25], whereas Theorem 6 exploits deletion based on rewrite orders.
Consider therefore the following rule:

l ≃ r | ∆ ���C | Γ
(Block⋑) where

(1) C ≻ (l ≃ r)σ and lσ ≻ rσ,
(2) ∆σ ⊆ Γ ,
(3) either (i) ↓lσ ∈ Γ
or (ii) lσ ⇝ r′ ∈ Γ and r′ ≻ rσ.

Theorem 5. (BLINC Blocking) Block⋑ is a deletion rule. That is, C | Γ is
redundant w.r.t. any constrained clause that contains l ≃ r | ∆.

Our last deletion inference relies on the fact that all rewrite rules in any partial
model have to be oriented left-to-right according to ≻. That is,

((((((((
C | Γ ∪ {l⇝ r}

(Orient⋑) where
(1) r ≻ l,
(2) C ≻ (l ≃ r).

Theorem 6. (BLINC Orientation) Orient⋑ is a deletion rule. That is, C |
Γ ∪ {l⇝ r} is redundant w.r.t. any constrained clause set.

We illustrate the above simplification and deletion rules with the following ex-
ample.
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Example 5. Consider the following well-behaved constrained clauses:

(1) P (g(a, x), b) | {↓b, f(x, b)⇝ b}, (2) P (g(y, z), w) | {f(z, w)⇝ b}
(3) g(a, z) ≃ b | {↓b}, (4) f(x, y) ≃ a | ∅

By Theorem 4, clause (2) subsumes clause (1). By Theorem 3, clause (1) can
be simplified with clause (3) into P (b, b) | {↓b, f(x, b) ⇝ a}. Finally, assuming
b ≻ a, clauses (1) and (2) are redundant w.r.t. clause (4) by Theorem 5. ⊓⊔

Remark 1. (Simplification Heuristics via Unblocking) We note that fur-
ther simplifications (and heuristics) can be implemented by removing constraints
from constrained clauses. This process of removing constraints is captured via
the following rule:

�
��C | Γ

(Unblock)
C | ∆

where ∆ ⊂ Γ .

Clearly, Unblock is a simplification rule, as removing constraints from a con-
strained clause preserves completeness in BLINC. ⊓⊔

We note that using the general notion of well-behaved clauses and Lemma 4, any
further redundancy elimination technique can be adapted to BLINC. We conclude
this section by showing that Theorems 3–6 can be adjusted and combined using
the ground redundancy of Definition 7. This results in stronger redundancy
detection, as the following example illustrates.

Example 6. Consider the following Sup⋑ inference:

g(f(v, w), a) ≃ g(w, a) | ∅ f(g(f(x, y), z), f(y, x)) ≃ z | ∅
σ =

v 7→ x,
w 7→ y,
z 7→ a

 ,
f(g(y, a), f(y, x)) ≃ a | ∆

where ∆ = {↓f(x, y), ↓f(y, x), ↓a, g(f(x, y), a)⇝ g(y, a)}. Note that the conclu-
sion is a well-behaved constrained clause. The conclusion cannot be simplified
by clauses

(1) f(x, y) ≃ f(y, x) and (2) f(x, x) ≃ x,

using any of Theorems 3–6. However, using similar conditions as in the Block⋑
deletion rule, we can do the following. Let θ be a substitution that makes the
conclusion ground. By a comparative case distinction on xθ and yθ,

(i) if xθ ≻ yθ, then using clause (1), by ↓f(x, y) ∈ ∆ and f(x, y)θ ≻ f(y, x)θ;
(ii) if xθ = yθ, then using clause (2) by ↓f(x, y) ∈ ∆ (or ↓f(y, x) ∈ ∆),

f(x, y)θ = f(x, x)θ ≻ xθ (or f(y, x)θ = f(x, x)θ ≻ xθ); and
(iii) if xθ ≺ yθ, then using clause (1) again, by ↓f(y, x) ∈ ∆ and f(y, x)θ ≻

f(x, y)θ;

we conclude that the ground closure (f(g(y, a), f(y, x)) ≃ a | ∆) · θ is redundant
in all cases, hence the conclusion is redundant w.r.t. clauses (1) and (2). ⊓⊔
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Variant
UEQ PEQ

Solved Uniques Solved Uniques

baseline 778 15 1276 34

blinc1 316 0 411 0

blinc2 327 0 425 0

blinc3 610 0 809 0

blinc4 775 13 1270 28

Fig. 4. Experimental comparison using variants BLINC in Vampire, using 1455 UEQ
problems and 2422 PEQ problems.

6 Evaluation

We implemented5 BLINC in Vampire [21], together with the simplification rules
of Section 5. We have also implemented a redundancy check called ordered-
ness that eagerly checks if the result of a superposition can be deleted. We
experimented with several variants of BLINC with redundancy elimination (all
techniques discussed in Section 5), using different heuristics for removing con-
straints from clauses via Unblock: (i) blinc1 does not use Unblock; (ii) blinc2
uses Unblock to remove constraints inherited from premises, hence only conclu-
sions of Sup⋑ will contain constraints; (iii) blinc3 uses Unblock occasionally on
the clause that would simplify the most clauses in the search space when un-
constrained; (iv) blinc4 uses Unblock on all clauses at activation. We compare
these to standard superposition (baseline).

Solving unit equality (UEQ) problems is still very hard for superposition-
based theorem provers, a claim substantiated by results in the CADE ATP
System Competition (CASC) [30]. For this reason, our evaluation focused on
the UEQ domain of the TPTP benchmark suite, version 8.1.2 [31]. Since our
work does not consider (variants of) resolution, but proper superposition, we
also restricted further evaluation to the pure equality (PEQ) benchmarks of
TPTP. As a result, our experiments use all benchmarks of the unit equality
(UEQ) and pure equality (PEQ) divisions from TPTP version 8.1.2 [31].

All our experiments are based on a Discount saturation loop [11] and a
Knuth-Bendix ordering, with a timeout of 100 seconds and without AVATAR [32].
Our results are summarized in Figure 4. The results show that blinc1 performs
poorly compared to baseline, blinc3 and blinc4, and that blinc2 performs
only slightly better than blinc1. The variant blinc3 performs much better than
blinc1 and blinc2 but it is still does not solve any new problems. The variant
blinc4 performs comparably to the state-of-the-art baseline but solves differ-
ent problems, 28 uniquely. Our preliminary results are therefore encouraging
for complementing state-of-the-art superposition proving with BLINC reasoning,
possibly in a portfolio solver.

We also analysed the impact of BLINC variants on skipping superposition
inferences during proof search. Figure 5 shows the distribution of benchmarks

5 https://github.com/vprover/vampire/commit/9c42b448996947e8

https://github.com/vprover/vampire/commit/9c42b448996947e8
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Fig. 5. Distribution of UEQ (top) and PEQ (bottom) benchmarks by ratio of skipped
superpositions to all superpositions, showing also average (avg) and median (mdn).
For example, using blinc1, on average 30.2%, resp. 26.0% of superpositions can be
skipped in UEQ, resp. PEQ benchmarks.

by percentage of skipped superposition inferences among all superposition in-
ferences during our runs for blinc variants. blinc1 skips more than half of
superposition inferences in a significant number of benchmarks, while the least
restrictive blinc4 still reduces the number of superposition inferences by a sig-
nificant amount in most benchmarks.

7 Related work

The basicness restriction [27,16] was extended to first-order logic, for example,
in basic superposition [26] and basic paramodulation [7]. The former uses ground
unification, the latter closures and variable abstraction to capture irreducibil-
ity constraints. In basic paramodulation, redex orderings are used similarly to
S-orderings in our framework. BLINC expresses more fine-grained blocking, for
example, distinguishing between different superpositions on the same term. Re-
lated notions in basic superposition have also been formalized [33].

Several critical pair criteria in completion-based theorem proving use irre-
ducibility notions. Blocking [4] is similar to basicness, while compositeness [4,17]
forbids any superpositions into terms with reducible subterms. General superpo-
sition [35,36] avoids superpositions when more general ones or ones symmetric
in variables have been performed. Our BLINC framework handles all such restric-
tions. These criteria are instances of the connectedness criterion [3], which has
been also explored in ground joinability [1], ground reducibility [22] and ground
connectedness [13].
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More general irreducibility constraints were considered in completion [23] and
in superposition [18], the latter using a semantic tree method for completeness.
Ordering constraints [9,10,20] and unification constraints [8,28] have also been
considered, usually moving them to the calculus level. Extending and generaliz-
ing our BLINC framework with such constraints is a future challenge.

8 Conclusions

We introduce reducibility constraints to block inferences during superposition
reasoning. Our resulting BLINC calculus is refutationally complete and is ex-
tended with redundancy elimination, allowing us to maintain efficient reasoning
when compared to state-of-the-art superposition proving. Integrating our ap-
proach with further inference-blocking constraints, such as blocking more gen-
eral or outermost superpositions, is an interesting line for future work. Adapting
our framework to domain-specific inference rules, e.g. in linear arithmetic or
higher-order superposition, is another line for future work.

Other interesting directions are (i) the use of a stronger semantics of con-
straints, as in Definition 10, and (ii) a “hybrid calculus”, improving on blinc3,
where we still use constraints for blocking generating inferences but relax them
whenever they prevent us from applying a simplification or a deletion rule.
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22. Löchner, B.: A Redundancy Criterion Based on Ground Reducibility by Ordered
Rewriting. In: IJCAR. pp. 45–59 (2004). https://doi.org/10.1007/978-3-540-25984-
8 2

23. Lynch, C., Snyder, W.: Redundancy Criteria for Constrained Completion. In: RTA.
pp. 2–16 (1993). https://doi.org/10.1007/978-3-662-21551-7 2

24. McCune, W.: Solution of the Robbins Problem. Journal of Automated Reasoning
19, 263–276 (1997). https://doi.org/10.1023/A:1005843212881

https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1007/3-540-55602-8_185
https://doi.org/10.1007/3-540-55602-8_185
https://doi.org/10.1007/978-3-031-38499-8_2
https://doi.org/10.1142/S0129054190000278
https://doi.org/10.1109/LICS.1995.523272
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1145/359138.359142
https://doi.org/10.1007/978-3-031-10769-6_11
https://doi.org/10.1007/978-3-031-10769-6_11
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1016/S0747-7171(88)80019-1
https://doi.org/10.1007/978-3-642-81955-1_23
https://doi.org/10.1007/3-540-48224-5_79
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-540-25984-8_2
https://doi.org/10.1007/978-3-540-25984-8_2
https://doi.org/10.1007/978-3-662-21551-7_2
https://doi.org/10.1023/A:1005843212881


18 Hajdu et al

25. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Hand-
book of Automated Reasoning, vol. I, chap. 7, pp. 371–443. Elsevier and MIT Press
(2001). https://doi.org/10.1016/B978-044450813-3/50009-6

26. Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: ESOP. pp. 371–
389 (1992). https://doi.org/10.1007/3-540-55253-7 22
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