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Abstract

We present the CheckMate tool for automated verification of game-theoretic secu-
rity properties, with application to blockchain protocols. CheckMate applies automated
reasoning techniques to determine whether a game-theoretic protocol model is game-
theoretically secure, that is, Byzantine fault tolerant and incentive compatible. We describe
CheckMate’s input format and its various components, modes, and output. CheckMate
is evaluated on 14 benchmarks, including models of decentralized protocols, board games,
and game-theoretic examples.

1 Introduction

Ensuring the security of decentralized protocols becomes even more critical in the context of
decentralized finance. Once deployed on the blockchain, vulnerabilities cannot be corrected and
have the potential for significant monetary loss. Various existing approaches for the analysis and
verification of blockchain protocols [2, 4, 8, 14, 16, 19, 20] focus on cryptographic and algorithmic
correctness or, in other words, whether it is possible to steal assets or gain secret information.
However, economic aspects must also be considered: whether it is possible for a group of users
to profit from unintended behavior within the protocol itself, leading to vulnerabilities [12].
Algorithmic game theory [7, 15] precisely captures such economic aspects.

This tool paper describes our open-source tool CheckMate1 for the automation of game-
theoretic protocol analysis. To the best of our knowledge, CheckMate is the first fully auto-
mated tool that enforces game-theoretic security. CheckMate constructs and proves game-
theoretic security properties in the first-order theory of real arithmetic while ensuring that
game-theoretic security is precisely captured via Byzantine fault tolerance and incentive com-
patibility of the analyzed protocol. As introduced in our previous work [3], Byzantine fault
tolerance of a protocol guarantees that as long as users follow protocol instructions, they can-
not be harmed, independently of how other users behave. Incentive compatibility ensures that
the intended course of action is also the most profitable to the users, implying that no user has
an economic incentive to deviate. We refer to this intended course of action as honest behavior,
captured by an honest history in game theory.

Following our previous work [18], inputs to CheckMate are extensive form games (EFGs).
CheckMate translates Byzantine fault tolerance into the EFG property weak(er) immunity,
whereas incentive compatibility is expressed in CheckMate via the EFG properties collusion
resilience and practicality. As such, protocol verification in CheckMate becomes the task
of proving weak(er) immunity, collusion resilience, and practicality, for which CheckMate
implements novel reasoning engines in first-order arithmetic.

1available at https://github.com/apre-group/checkmate/tree/lpar25

https://github.com/apre-group/checkmate/tree/lpar25
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Figure 1: The CheckMate pipeline.

The purpose of this tool paper is to describe what CheckMate can do (Section 2) and
how it can be used (Section 3). Theoretical details are covered in our previous work [3], but
we also improve the algorithmic setting here. CheckMate is no longer restricted to linear
input constraints, improves case splitting over arithmetic formulas, and revises counterexamples
to practicality, as well as weakest precondition generation and strengthening. For efficiency
reasons, CheckMate has an entirely new implementation in C++, using about 2,800 lines
of code tightly integrated with the satisfiability modulo theory (SMT) solver Z3 [5]. Our
experimental results show the practical gains made over our previous work and also add six new
benchmarks to the landscape of game-theoretic security analysis. Overall, we usedCheckMate
to decide the security of 14 benchmarks, including five based on real-world protocols.

2 Structure and Components

CheckMate analyzes game-theoretic security of game models. Given an EFG G, CheckMate
decides whether G satisfies the security properties of (i) weak(er) immunity, (ii) collusion re-
silience, and (iii) practicality. Properties (i)-(iii) imply game-theoretic security of G [3].

Pipeline. Figure 1 summarizes the CheckMate pipeline. After parsing and preprocessing
an input EFG G, CheckMate processes one honest history and security property (i)–(iii) at
a time. For this history and property, CheckMate constructs an SMT formula ϕ such that
ϕ is satisfiable iff the EFG satisfies the security property – without the need for further case
analysis – with respect to the history. The formula ϕ is passed to the case splitting engine of
CheckMate, which calls Z3 iteratively to decide whether ϕ is satisfiable: if not, case analysis is
applied. This iterative process is terminating as CheckMate is both sound and complete [3].
If ϕ is satisfiable, we extract a model – if required by the user – and output the result. If
ϕ is unsatisfiable and no further case splits apply, CheckMate implements various actions
controlled by command-line options: listing cases that violate ϕ; producing counterexamples
witnessing why ϕ was violated; and/or computing the weakest precondition that, if added to
G as an additional constraint, satisfies ϕ. We describe the main components of CheckMate
using Figure 2.
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Figure 2: Game G with a > 0,
honest history (rA, lB).

Illustrative Example. The EFG in Figure 2 has two play-
ers, A and B. Nodes represent the player whose turn it is
and edges their choices. On reaching a leaf, the game ends,
and the pay-off utility for each player is given. Here, player
A starts and chooses between actions lA and rA. If lA is
chosen, the game ends, and A receives utility a− 1, whereas
player B receives a. Otherwise, rA is chosen, and player B
continues in a further subgame. We assume a > 0 and spec-
ify the honest history of G to be (rA, lB): that is, we fix the
“honest” choice of player A to be rA and of B to be lB .

2.1 CheckMate Input

CheckMate takes as input a JSON file [9] with a specific structure containing the EFG to
be analyzed together with its honest histories. Figure 3 shows the encoding of the EFG from
Figure 2, conforming to the JSON schema of CheckMate2. The schema defines the structure
of the input as an object with the following keys:

players A list of all players, represented as strings.

actions A list of all possible actions throughout the game, represented as strings.

constants Symbolic constants occurring in the players’ utilities.

1 { "players" : [ "A" , "B" ],

2 "actions" : [ "l A" , "r A" , "l B" , "r B" ],

3 "infinitesimals" : [],

4 "constants" : [ "a" , "b" ],

5 "initial constraints" : [ "a > 0" ],

6 "property constraints" : { "weak immunity" : [],

7 "weaker immunity" : [],

8 "collusion resilience" : [],

9 "practicality" : []},
10 "honest histories" : [[ "r A" , "l B" ]],

11 "tree" : {
12 "player" : "A" ,

13 "children" : [

14 { "action" : "l A" ,

15 "child" : { "utility" : [{ "player" : "A" , "value" : "a-1" },
16 { "player" : "B" , "value" : "a" }]}},
17 { "action" : "r A" ,

18 "child" : { "player" : "B" ,

19 "children" : [

20 { "action" : "l B" ,

21 "child" : { "utility" : [{ "player" : "A" , "value" : "a-2" },
22 { "player" : "B" , "value" : "b" }]}},
23 { "action" : "r B" ,

24 "child" : { "utility" : [{ "player" : "A" , "value" : "b" },
25 { "player" : "B" , "value" : "a" }]}}]}}]}}

Figure 3: CheckMate input encoding Figure 2.

2input.schema.json in the repository (https://github.com/apre-group/checkmate/tree/lpar25)
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infinitesimals Symbolic constants occurring in the players’ utilities that are treated as in-
finitely closer to 0 than the constants in constants. Symbolic values in utilities must be
included either in infinitesimals or constants.

initial constraints Initial constraints to be enforced on the otherwise unconstrained sym-
bolic values in utilities.

property constraints Further initial constraints specifically for each security property of
weak(er) immunity, collusion resilience, or practicality. This key lets the user specify the
weakest possible assumptions for each security property.

honest histories A list of honest histories, i.e., each history is one of the desired courses
of EFG actions. Each history is the game-theoretic behavior that is (dis-)proved secure
by CheckMate sequentially. An honest history is a list of actions; therefore, this key
expects a list of lists of strings.

tree The structure of the EFG. Each node in the game tree is either a branch or a leaf. Each
branch is represented by an object with the following keys:

player The name of the player whose turn it is.

children A list of branches the player can choose from. Each branch is encoded as
another object with keys action and child. The action key provides the action
that the player takes to reach child, another tree.

Each leaf of tree is encoded as an object with a single key utility. As leaves represent
one way of finishing the game, it contains the pay-off information for each player in this
scenario. utility contains the players’ utilities using keys:

player The name of the player.

value The player’s utility. This can be any term over infinitesimals, constants, and reals
provided as strings.

CheckMate Formulas. CheckMate uses infix notation in arithmetic and Boolean expres-
sions over real numbers, constants, and infinitesimals declared in the input. It supports +, -,
and * in arithmetic expressions with the usual meanings, but multiplication is allowed only if
at least one of the multiplicands is not an infinitesimal. The Boolean expressions =, !=, <, <=,
>, and >= have their usual meanings. Booleans can be combined only with disjunction spelled
|, but this is not a limitation in practice.

Example (EFG in JSON format). In the JSON encoding of Figure 3 corresponding to the
game G of Figure 2, we have the following keys. The players are A and B, the actions of G are
l A, r A, l B, and r B. The only symbolic values of G are a and b. None of them are supposed
to be infinitesimals; thus, they are both listed under constants. The only initial constraint we
enforce is that a is strictly positive, that is, a > 0, as specified in the caption of Figure 2. We
do not assume any property constraints, so the corresponding lists in Figure 3 are empty. As
defined in Figure 2, we consider (r A, l B) the only honest history. In G, it is player A’s turn at
the first internal node, which has two children. The first child, which is led to through action
l A, is an internal node containing utilities a-1 for player A and a for player B. The other child,
accessible via action r A, leads to another internal node, where it is the turn of player B.
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1 WEAK IMMUNITY

2

3 Is history [r_A , l_B] weak immune?

4 Require case split on (>= b 0.0)

5 Require case split on (>= (- a 2.0) 0.0)

6 Case [(>= b 0.0), (>= (- a 2.0) 0.0)] satisfies property.

7 Case [(>= b 0.0), (< (- a 2.0) 0.0)] violates property.

8 NO, it is not weak immune.

9

10 Counterexample for [(>= b 0.0), (< (- a 2.0) 0.0)]:

11 Player A can be harmed if:

12 Player B takes action l_B after history [r_A]

13

14 Weakest Precondition:

15 (and (>= a 2.0) (>= b 0.0))

Figure 4: CheckMate output for analyzing the weak immunity of the EFG of Figure 3, with
counterexample and weakest precondition generation.

2.2 CheckMate Output

Given an input as detailed in Section 2.1, CheckMate analyzes each specified security property
(<current property>) for each honest history (<current honest history>). To this end,
CheckMate answers the following question in its output:

Is history <current honest history> <current property>? (Q)

Figure 4 shows the CheckMate output for the input of Figure 3, when considering the security
property of weak immunity.

By answering the above question (Q), CheckMate outputs intermediate logs about neces-
sary case splits, term comparisons used during splitting, and partial results during CheckMate
reasoning. Intermediate logs are displayed via indentation in the CheckMate output (see lines
4–6 in Figure 4). A partial CheckMate result indicates the satisfiability of the considered
security property in the currently analyzed case (line 6 in Figure 4). Once an answer to (Q) is
derived (line 8 of Figure 4), CheckMate reports – without indentation – either

• NO, it is not <current property>, in which scenario the EFG does not satisfy the
analyzed security property and is, therefore, not game-theoretically secure;

• YES, it is <current property>, in which case the EFG with the considered honest
history has the analyzed property and may be game-theoretically secure. If a game and
a history satisfy each security property, that is, not only the one currently analyzed but
each of the three properties of weak(er) immunity, collusion resilience, and practicality,
the EFG is game-theoretically secure.

In addition, CheckMate can be instrumented by the user to also report on strategies (Sec-
tion 2.4), counterexamples (Section 2.5), and weakest preconditions (Section 2.6) produced
while answering question (Q).

2.3 Case Splitting in CheckMate

The case splitting engine takes as input the generated SMT formula ϕ corresponding to the
analyzed security property. CheckMate uses Z3 to determine satisfiability of ϕ. If ϕ is
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satisfiable, CheckMate uses the model satisfying ϕ, which is provided by Z3 and proceeds to
the next reasoning engine. Otherwise, Z3 reports an unsat core, a set of constraints that are a
sufficient reason why ϕ is unsatisfiable. The case splitting engine uses this unsat core to decide
whether unsatisfiability is due to (i) a necessary case split on the utilities’ values that has not
yet been considered; or (ii) the EFG structure.

If (i), CheckMate creates two new Z3 queries: one where we add the new utility constraint
to ϕ, and one with its negation. The property is satisfied only if both queries are satisfiable,
which might require case splitting recursively. We record models for each case, again recursively
if necessary. If (ii), CheckMate records the current case split as an unsat case together
with its unsat core: these are used later for counterexample and precondition generation. If
requested by the user, there is also a feature to keep exploring all cases, even after encountering
unsatisfiability. This allows us to provide counterexamples to unsat cases or compute weakest
preconditions to be further used in redesigning protocols without unintended behavior.

2.4 Strategy Extraction

If requested by the user and if the property was satisfied by the current honest history, Check-
Mate produces explicit strategies as follows. We take as input the list of cases that we divided
into in Section 2.3, together with their models, and infer the corresponding game-theoretic
strategy per case. These strategies provide a witness for the game and its honest history, sat-
isfying the security property. The list of cases with their witness strategies is subsequently
provided in the CheckMate output.

2.5 Counterexamples

If requested by the user (Section 3) and if the honest history violated the security property,
CheckMate additionally computes counterexamples as to why the security property was vio-
lated. Depending on further flags (Section 3), one or all counterexamples for one or all unsat
cases are produced. Accordingly, the counterexamples engine receives one or all unsat cases
and their unsat cores. For all received cases, we study the unsat core to extract one or all
counterexamples.

To compute all counterexamples, we forbid the game choices that led to the found counterex-
ample by adding their negation to the SMT formula ϕ’s constraints and checking satisfiability.
We then iterate until the extended ϕ satisfies the property. As in previous work [3], coun-
terexamples to practicality are computed differently, i.e., without the use of unsat core, while
following the same iterative procedure to produce all counterexamples.

Lines 10–12 of Figure 4 list a counterexample to the weak immunity of Figure 3. Within
a counterexample to weak immunity, CheckMate reports on the harmed player p (line 11 of
Figure 4) and lists the actions the other players can take to attack p. These actions cannot be
prevented by the honest player p, which leads to p being harmed (line 12 of Figure 4).

In a counterexample to collusion resilience, CheckMate provides the group of players that
profits from an attack and also lists the attack. An attack is a set of deviating actions the
malicious group takes to profit, while the honest players cannot prevent these actions.

In a counterexample to practicality, CheckMate lists a player p, a rational subhistory r
different from the honest one, and the part of the honest history after which p profits from
deviating to r.

6
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2.6 Weakest Preconditions

To extract the weakest precondition, that – if added to the set of initial constraints – makes
the honest history satisfy the security property, all unsat cases have to be computed in the case
splitting engine (see Section 2.3). This list of unsat cases operates as the input to the weakest
preconditions routine. We apply tailored simplification steps to reduce the list of unsat cases
to an equivalent and readable formula.

This only applies if the user set the weakest precondition flag of CheckMate (see Section 3)
and the analyzed honest history violated the respective security property. In this case, the
computed weakest precondition is provided as output. Lines 14–15 of Figure 4 list the weakest
precondition for the weak immunity of Figure 3 and history (rA, lB).

3 Usage

CheckMate invocations are of the form checkmate GAME FLAGS, where GAME is an input file
as specified in Section 2.1 and FLAGS are described below. CheckMate accepts the following
options to modify its behavior:

--preconditions If a security property is not satisfied, CheckMate computes the weakest
precondition, which, if enforced additionally, would satisfy the security property.

--counterexamples If a security property is not satisfied, CheckMate provides a counterex-
ample showing why the property does not hold, i.e., an attack vector. The number of
considered scenarios is controlled by the all cases flag.

--all counterexamples If a security property is not satisfied, CheckMate provides all coun-
terexamples for the violated case(s).

--all cases If a security property is not satisfied, CheckMate computes all violated cases.

--strategies If a security property is satisfied, CheckMate provides evidence in the form
of a strategy that satisfies it.

Additionally, the user can choose which security properties to analyze with --weak immunity,
--weaker immunity, --collusion resilience, and --practicality. For instance, to gener-
ate the output shown in Figure 4, we execute

checkmate GAME --weak immunity --counterexamples --preconditions,

where GAME is an input file containing Figure 3.

4 Evaluation

We evaluated our tool on 14 benchmarks. Table 1 surveys our examples, with its last 6 lines
listing new benchmarks compared to [3]. Out of our 14 examples, 5 describe blockchain protocols
with 2, 3, or 5 players – these are the Simplified Closing, Simplified Routing, Closing,
3-Player Routing and Unlocking Routing. The Auction example of Table 1 models the
economic behaviors of an auction; Tic Tac Toe a game of tic-tac-toe; whereas the 7 other
examples of Table 1 are game-theoretic problems with 2 to 4 players. Table 1 summarizes our
experimental results. In each of the benchmarks, the current CheckMate version (version
v1), presented in this paper, is significantly faster than its initial prototype (version v0) [3].
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Our tool improvements make even the 5-player game Unlocking Routing with 36,113
nodes feasible to analyze. Our biggest game Tic Tac Toe, on which CheckMate does not
terminate within five hours, is modeled in an unnecessarily huge way on purpose to showcase
CheckMate’s limitations: the majority of EFG branches could be removed for symmetry
reasons. Scaling CheckMate further is an interesting challenge for future work.

Game Nodes Players Histories Time (v1) Time (v0)
Splitswi 5 2 3 0.03 0.35
Splitscr 5 2 3 0.03 0.35
Market Entry 5 2 3 0.02 0.28
Simplified Closing 8 2 2 0.02 0.26
Simplified Routing 17 5 1 0.02 0.31
Pirate 52 4 40 1.07 27.08
Closing 221 2 2 0.34 9.6
3-Player Routing 21,688 3 1 6.83 242.54
G (Figure 2) 5 2 1 0.02 0.18
Centipede 19 3 1 0.07 0.48
EBOS 31 4 1 0.02 0.53
Auction 81 4 1 0.1 1.39
Unlocking Routing 36,113 5 1 10.85 478.58
Tic Tac Toe 549,946 2 1 TO TO

Table 1: Results of the current CheckMate (v1) versus its initial prototype (v0) from [3].
Runtimes in seconds; timeout (TO) after 5 hours; using a 12-core AMD Ryzen 9 7900X processor
running at 4.7 GHz and 128 GB of DDR5 memory clocked at 4800 MHz.

5 Related Work and Conclusion

We describe the CheckMate tool for automating the security analysis of blockchain protocols.
CheckMate complements the state of the art in protocol verification with game-theoretic se-
curity analysis, providing economic security guarantees in addition to algorithmic correctness.
CheckMate differs from existing static analyzers [4, 8, 16] of Ethereum smart contracts, as
these techniques merely consider cryptographic security and formally verify the Solidity [1]
implementation of smart contracts. Formal methods are also used in the cryptographic veri-
fication of more general protocols [2, 10, 14], yet without game-theoretic considerations. On
the other hand, existing game-based analyzers [6, 11, 13] exhibit stochastic concurrent games
and provide probabilistic results about likely behaviors [11] or apply compositional techniques
for simulating game behavior. Unlike [6, 11, 13], CheckMate supports SMT-based precise
reasoning over symbolic utilities without predicting/simulating its EFG properties. Security
analysis in CheckMate becomes a theorem-proving task in first-order real arithmetic, for
which CheckMate implements novel, SMT-based techniques. With its various features and
modes, CheckMate helps blockchain developers not only to analyze their protocols but also to
“debug” and revise their protocol modeling and verification tasks. In particular, the counterex-
amples generated by CheckMate capture attack vectors to be mitigated, whereas the weakest
preconditions computed by CheckMate provide constraints to be enforced in the protocols.
Our experimental results demonstrate the real-world scalability of CheckMate, verifying, for
example, the closing and routing phases of Bitcoin’s Lightning Network [17].
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