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Abstract
Automatic theorem provers may introduce fresh function or predicate symbols for various reasons.
Sometimes, such symbols can be reused. We describe a simple form of symbol reuse in the first-order
system Vampire, investigate its practical effect, and propose future schemes for more aggressive reuse.

1. Introduction

An automatic theorem prover might introduce a fresh symbol — that is, a symbol it has not
previously seen — at any time between the start and end of its execution. During traditional
preprocessing [1, 2], the two most well-known examples are Skolemization to eliminate ∃-binders,
and some variation of the Tseitin transformation1 to avoid excessive duplication of subformulae.
Fresh symbols may also be used in preprocessing to eliminate exotic input features [3], or to
optimise inputs with respect to some search algorithm [4]. New symbols may even be introduced
during proof-search proper, such as for clause splitting [5] or induction [6]. In some cases,
these symbols can be reused. We examine reuse of fresh symbols in the Vampire [7] automatic
theorem prover, but results could easily generalise to other similar systems.

For example, consider Skolemizing

∃𝑥.𝑃 (𝑥) ∨𝑄(𝑥)

∃𝑥.𝑃 (𝑥) ∨𝑄(𝑥)

Plainly, these are the same formula and could employ the same Skolem constant, but both of
Vampire’s normal-form routines produce two constants — and therefore two clauses — instead
of the possible one:

𝑃 (𝑠1) ∨𝑄(𝑠1)

𝑃 (𝑠2) ∨𝑄(𝑠2)

Vampire could in principle notice that these are the same formula, then only process it once. A
natural way to achieve this is by formula sharing [8], but this would be quite a large change to
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Vampire and has some issues of its own. The example given here is very simple, but symbol
reuse can be employed extensively: see §4 for some ideas.

1.1. Motivation

It may appear that reusing introduced symbols is a clear win for system performance. In the case
of definition introduction, removing duplicate definitions reduces the total number of clauses,
which is considered likely to improve performance. However, reused symbols allow inference
between parts of the search space that do not otherwise interact: in some cases this might
shorten proofs or eliminate redundancy, but in others it expands the search space needlessly.

There is cause for optimism: Vampire uses an increasing amount of SAT/SMT technol-
ogy to organise and perform ground reasoning tasks, such as AVATAR [9], AVATAR modulo
theories [10], the InstGen calculus and global subsumption [11], MACE-style finite model build-
ing [4], theory instantiation [12], and more [13]. Reusing symbols in this context reduces the
SAT/SMT model space, which is likely to improve both ground and first-order performance.
Additionally, concurrent proof attempts [14] can share information over a common signature:
reusing symbols consistently extends this common signature to introduced symbols.

1.2. Justification

When is it possible to reuse a symbol? Informally, introduced symbols often represent or stand
for some formula. Then, an existing symbol representing the same formula may be reused.
This sleight of hand is most alluring with definition introduction, where a fresh predicate 𝑃
is defined to be equivalent to 𝐹 : 𝑃 stands for 𝐹 . Skolemization, when encountering ∃𝑥.𝐹 ,
introduces a function 𝑠 with semantics roughly “some 𝑠 such that F”: again, 𝑠 stands for 𝐹 .

It is possible to relax the requirement for identical formulae to merely equivalent formulae.
Consider introducing a symbol 𝑠 to represent 𝐹 : naturally enough, 𝑠 could also be used to refer
to 𝐺 if 𝐹 ≡ 𝐺. First-order logic is sufficiently expressive to even allow 𝑠(𝑥) to stand for 𝐹 [𝑥],
and then use 𝑠(𝑡) for 𝐹 [𝑡]. Such relaxations can be powerful, see §4 for more on this.

1.3. Setting

Vampire [7] is a state-of-the-art automatic theorem prover for first-order logic, with extensions
to support various theories, induction [15, 6], rank-1 polymorphism [16], first-class booleans [3],
and higher-order logic [17]. It implements many different techniques for reasoning efficiently
despite these very hard problem domains. These techniques are not equally effective on all
problems and have many tunable parameters, which can make the tool tricky for end-users:
therefore, pre-tuned strategy schedules are provided that run a series of pre-tuned options.
Vampire operates exclusively within a suitably-extended clause normal form. All formulae

not in this form are translated into it before proof search begins, using Vampire’s advanced
preprocessing routines [8]. This preprocessing frequently introduces fresh symbols.



2. Implementation and Pitfalls

We implement symbol reuse for Skolemization and definition introduction in Vampire’s pre-
processing routines. Formulae are identified up to 𝛼-equivalence for this initial work, and
symbol reuse for Skolem symbols and definitions can be switched on and off separately. We also
describe some unpleasant bugs we encountered during testing (subsections beginning Pitfall)
which we hope the reader can now avoid in their own implementation.

2.1. Key Functions

The basic implementation idea is to define a “key” function 𝑘 from a formula to some reasonable
key type, such as a formula, string or code sequence. This key can then be used to lookup and
reuse symbols that have been used for the same key before. Suppose we need a symbol to stand
for some formula 𝐹 . If we have an existing symbol for 𝑘(𝐹 ), then we may re-use this symbol.
Otherwise, we create a fresh symbol and store it with 𝑘(𝐹 ) so that we may reuse it later. In this
work we consider a relatively simple key function (see below), but the general setting allows
more complex key functions in future (§4).

2.2. Detecting 𝛼-equivalence

The simplest key function is the identity function 𝑘id, but this will only reuse symbols for really
trivial cases, and even a renaming of variables will defeat it. Consider introducing a symbol for

𝐹 ≡ ∀𝑥∀𝑦. 𝐻[𝑥, 𝑦]

versus
𝐺 ≡ ∀𝑦∀𝑥. 𝐻[𝑦, 𝑥]

for example: 𝑘id(𝐹 ) ̸= 𝑘id(𝐺). We implement a slightly more sophisticated key function 𝑘𝛼 to
detect 𝛼-equivalence, which canonically renames formulae left-to-right using a sequence 𝑥𝑖 for
each new variable encountered. Then both the above formulae map to the same key,

𝑘𝛼(𝐹 ) = 𝑘𝛼(𝐺) = ∀𝑥0∀𝑥1.𝐻[𝑥0, 𝑥1]

allowing more generous symbol reuse. This still does not handle more complex cases, such as
identifying ∀𝑥∀𝑦. 𝐻[𝑥, 𝑦] and ∀𝑥∀𝑦. 𝐻[𝑦, 𝑥]. We note that for our purposes this is equivalent
in power to more-complex schemes like de Bruijn indices, as we only wish to identify strictly
𝛼-equivalent formulae. We do not need other operations such as capture-avoiding substitution.

2.3. Pitfall: Free Variables

Introduced symbols must usually close over the free variables of the formula they represent.
For example, consider Skolemizing ∀𝑥∀𝑦∃𝑧.𝑃 (𝑥, 𝑦, 𝑧). The outer two universal quantifiers are
removed, and we obtain 𝑃 (𝑥, 𝑦, 𝑠(𝑥, 𝑦)), where 𝑠 is a fresh symbol applied to the now-free
variables 𝑥 and 𝑦. The reuse key in this case is

𝑘𝛼(∃𝑧.𝑃 (𝑥, 𝑦, 𝑧)) = ∃𝑥0.𝑃 (𝑥1, 𝑥2, 𝑥0).



If we were now to additionally Skolemize ∀𝑥∀𝑦∃𝑧.𝑃 (𝑦, 𝑥, 𝑧), then the key is the same and
𝑃 (𝑦, 𝑥, 𝑠(𝑦, 𝑥)) is a legitimate instance of symbol reuse. Here we draw the reader’s attention to
the order of variables in the Skolem term. However, Vampire’s existing Skolemization routine
created Skolem terms with variables in the order of binding, not of occurrence, and therefore
produced 𝑃 (𝑦, 𝑥, 𝑠(𝑥, 𝑦)), which is unsound. To see this, consider the satisfiable set of formulae

∀𝑥∀𝑦∃𝑧. 𝑧 = 𝑓(𝑥, 𝑦)

∀𝑥∀𝑦∃𝑧. 𝑧 = 𝑓(𝑦, 𝑥)

𝑓(𝑎, 𝑏) ̸= 𝑓(𝑏, 𝑎)

Implementors must ensure that terms are created with variables in the order they occur in
subformulae (or at least in a consistent order with respect to keys), lest they fall prey to this
mis-reuse.

2.4. Pitfall: Sorts and ad-hoc Polymorphism

Some symbols are usually assumed to be ad-hoc polymorphic, even in monomorphic many-
sorted systems. A good example is the equality predicate, but Vampire also considers e.g.
arithmetic operators to be ad-hoc polymorphic over the integers, rationals, and reals. The
problem here is that the reuse key must differentiate between the types of arguments the
overloaded symbol is applied to. Consider Skolemizing the input problem

∀𝑥 : 𝜎. ∀𝑦 : 𝜎. ∃𝑧 : 𝜌. 𝑃 (𝑧) ∨ 𝑥 = 𝑦

∀𝑥 : 𝜏. ∀𝑦 : 𝜏. ∃𝑧 : 𝜌. 𝑃 (𝑧) ∨ 𝑥 = 𝑦

where 𝜎, 𝜏, 𝜌 are distinct sorts. The reuse key in both cases is

𝑘𝛼(∃𝑧 : 𝜌. 𝑃 (𝑧) ∨ 𝑥 = 𝑦) = ∃𝑥0 : 𝜌. 𝑃 (𝑥0) ∨ 𝑥1 = 𝑥2

But the symbol cannot be reused in this case as it would be ill-typed. One solution (which we
implement) is to include the types of free variables in the reuse key, so that the keys are

𝑥1 : 𝜎, 𝑥2 : 𝜎 ⊢ ∃𝑥0 : 𝜌. 𝑃 (𝑥0) ∨ 𝑥1 = 𝑥2

𝑥1 : 𝜏, 𝑥2 : 𝜏 ⊢ ∃𝑥0 : 𝜌. 𝑃 (𝑥0) ∨ 𝑥1 = 𝑥2

Another solution, perhaps neater, is annotating ad-hoc overloaded symbols with their argument
types, resulting in keys

∃𝑥0 : 𝜌. 𝑃 (𝑥0) ∨ 𝑥1 =𝜎 𝑥2

∃𝑥0 : 𝜌. 𝑃 (𝑥0) ∨ 𝑥1 =𝜏 𝑥2

Yet another is to have the reused symbol be polymorphic over the ad-hoc type variables in the
reuse key, although this does require rank-1 polymorphism. We implement the first solution for
this work, although at some point in the future expect to switch to another.



2.5. Summary of Implemented Technique

To recap, we define a key function 𝑘𝛼(𝐹 ) = Γ ⊢ 𝐹 ′, where Γ is an ordered list of pairs
𝑥 : 𝜏 giving the types of free variables in 𝐹 ′, and 𝐹 ′ is a canonically-renamed copy of 𝐹 .
If two formulae 𝐹 and 𝐺 have the same key, we may use the same introduced symbol 𝑠
in terms/predicates representing 𝐹 or 𝐺. We reuse symbols in this way while performing
definition introduction or Skolemization. The term for a given formula 𝐹 is constructed from a
possibly-reused symbol 𝑠 and the free variables of 𝐹 in order of their occurrence.

2.6. Compromise: Quantifier Blocks and Skolemization

While developing the technique, we noticed that on certain extreme problems attempting to
reuse Skolem symbols leads to a degradation of performance. A careful look revealed a pro-
hibitive quadratic complexity of repetitive key computation for deep existential quantifier blocks.
For instance, on a formula ∃𝑥1𝑥2 . . . 𝑥𝑛. 𝐹 we would need to compute 𝑘𝛼(∃𝑥1𝑥2 . . . 𝑥𝑛. 𝐹 ),
𝑘𝛼(∃𝑥2 . . . 𝑥𝑛. 𝐹 ), 𝑘𝛼(∃𝑥3 . . . 𝑥𝑛. 𝐹 ) . . . , which becomes too expensive for a large 𝑛 and 𝐹 .

We decided to avoid this expensive case by storing Skolem symbols for reuse on per-quantifier-
block basis. This way, we only need one call to the key function for each (existential) quantifier
block and nominally store a whole vector of Skolems with the key. In the actual implementation,
however, only one symbol is stored, because we can assume the remaining ones occupy consec-
utive slots in the symbol table. As a mild concession, this trick gives up on the ability to reuse
symbols within blocks: for example, when s1, s2 . . . , s𝑛 get jointly stored at 𝑘𝛼(∃𝑥1𝑥2 . . . 𝑥𝑛. 𝐹 ),
we are not able to later selectively retrieve, e.g., s𝑛 alone for 𝑘𝛼(∃𝑥𝑛. 𝐹 ). However, in practice,
this seems to be a reasonable compromise.

3. Practical Effect

With the change described in §2, the example from §1 now works as expected. Practical effec-
tiveness now depends upon two factors: whether benchmarks actually contain 𝛼-equivalent
(sub)formulae for which Vampire can reuse introduced symbols, and whether this reuse is bene-
ficial for proof search in Vampire (or downstream users of Vampire’s clausification routines).

3.1. Reusable Symbols

We consider the untyped first-order (“FOF”) benchmarks of the TPTP [18] problem library,
version 7.5.0, which amounts to 9091 problems over a moderate number of domains. Vampire
processed these problems using its default clausification routine and attempted to reuse defini-
tion and Skolem symbols up to 𝛼-equivalence. Of these 9091 problems, Vampire could reuse
at least one symbol for 4311 problems. In some cases, a large number of symbols could be
reused many times: in the case of ITP024+4, Vampire was able to reuse one of 3978 intro-
duced symbols on 19442 separate occasions, with the most commonly-reused symbol reused in
184 different locations. We consider this relatively strong evidence that attempting to reuse
introduced symbols may be worthwhile, even for smaller systems that have otherwise simple
preprocessing.



Table 1
Number of TPTP problems solved by Vampire’s default strategy under a 50 billion instruction limit, with

formula definition reuse (dr), Skolem symbol reuse (skr), and both at once (skr+dr).

solved uniquely

default 4290 11

dr 4297 14

skr 4300 12

skr+dr 4305 15

Table 2
An analogue of Table 1 for problems solved on average (based on the methodology from [19]).

av. solved sigma

default 4281.3 10.4

dr 4281.2 10.5

skr 4287.2 10.4

skr+dr 4289.2 10.5

3.2. Effect on Proof Search

To measure the effect of symbol reuse on proof search, we ran Vampire2 (version 4.6.1) in
its default (single-strategy) setting and its variations using symbol reuse on the mentioned
9091 FOF TPTP problems. The experiment was run on a server with Intel® Xeon® Gold 6140
CPUs clocked at 2.3GHz with 500GB RAM. To utilise the parallelism of our server while
maintaining stability of the experiment we limited the runs using an instruction limit (rather
than the more usual time limit).3 More specifically, we used a limit of 50 billion instructions,
which approximately corresponds to 10 seconds on the machine.

The result of our experiment are shown in Table 1. We can see that there is a consistent
(although modest) improvement by both symbol reuse applications and that there is a combined
benefit of using then jointly. The column with unique solutions reminds us that neither of the
techniques is beneficial universally. However, as a sign of complementarity, unique solutions
indicate that the newly available symbol reuse options will be useful at constructing more
powerful strategy schedules.

To get a more robust version of the results, resistant to possible influence of statistical noise,
we rerun the whole experiment in a shuffling mode, randomizing the prover at various don’t-
care non-deterministic call sites and averaging the results over many independently seeded
runs (please check out our previous work [19] for the exact description of the method). Table 2
reports on the computed averages as well as the estimated standard deviation (sigma). We
can see that the positive effect of definition reuse on its own could not be confirmed, but the
combined strategy using both definition reuse and Skolem symbol reuse is still the best one. All
the averages are slightly lower than the values in Table 1 due to the overhead of shuffling (in
accord with a remark in [19]).

We could identify a single TPTP problem as a robust gain of symbol reuse, namely the problem

2https://github.com/vprover/vampire
3See appendix A of our previous work [19] for more details on instruction limiting.

https://github.com/vprover/vampire


LCL667+1.010, which means the probability of solving this problem by default was 0.0 and by
skr+dr 1.0, and no robust loss. Vampire reused 344 Skolem symbols on LCL667+1.010.

3.3. Bonus: Induction

We were pleasantly surprised to find that Vampire can now also reuse symbols generated during
proof search with inductive reasoning. For inductive reasoning, Vampire uses many different
inference rules [6, 15, 20, 21]. The simplest is of the form

¬𝐿[𝑡] ∨ 𝐶

cnf(𝐹 → ∀𝑥.𝐿[𝑥])

where 𝑡 is a ground term, 𝐿 is a ground literal, 𝐶 is a clause, cnf(·) denotes a translation
to clausal normal form, and 𝐹 → ∀𝑥.𝐿[𝑥] is a valid induction schema. The schema can be
instantiated with various induction axioms, such as structural induction axiom for inductive
datatypes or induction axiom with symbolic bounds for integers [6].

All clauses from the clausified conclusion of the rule contain the literal 𝐿[𝑥]. After adding
these clauses to the search space, Vampire immediately resolves them against the premise of
the rule, ¬𝐿[𝑡] ∨ 𝐶 , obtaining

cnf(¬𝐹 ) ∨ 𝐶. (1)

Since the resulting clauses (1) do not contain the term 𝑡 from ¬𝐿[𝑡] ∨ 𝐶 , the result of applying
induction on ¬𝐿[𝑡] ∨ 𝐶 is the same as on ¬𝐿[𝑡′] ∨ 𝐶 for different 𝑡 and 𝑡′. Vampire therefore
reduces redundancy by applying the induction rule on a premise ¬𝐿[𝑡′] ∨ 𝐶 only if it did not
already apply induction with the same axiom on some ¬𝐿[𝑡] ∨ 𝐶 . However, this redundancy-
avoiding heuristic does not work for some induction axioms having a more complex consequent,
used in more-complex induction inference rules. One such case is the upward integer induction
axiom with default bound [6]:

𝐿[0] ∧ ∀𝑦.(𝑦 ≥ 0 ∧ 𝐿[𝑦] =⇒ 𝐿[𝑦 + 1]) =⇒ ∀𝑥.(𝑥 ≥ 0 =⇒ 𝐿[𝑥]) (2)

Consider applying the induction rule with the axiom (2) on the premise ¬𝐿[𝑡]. The result of
clausifying and Skolemizing the axiom is:

¬𝐿[0] ∨ 𝑠 ≥ 0 ∨ 𝑥 < 0 ∨ 𝐿[𝑥]

¬𝐿[0] ∨ 𝐿[𝑠] ∨ 𝑥 < 0 ∨ 𝐿[𝑥] (3)

¬𝐿[0] ∨ ¬𝐿[𝑠+ 1] ∨ 𝑥 < 0 ∨ 𝐿[𝑥]

where 𝑠 is a Skolem constant corresponding to 𝑦 in (2). Resolving the clauses (3) with the
premise ¬𝐿[𝑡] results in clauses containing 𝑡:

¬𝐿[0] ∨ 𝑠 ≥ 0 ∨ 𝑡 < 0

¬𝐿[0] ∨ 𝐿[𝑠] ∨ 𝑡 < 0 (4)

¬𝐿[0] ∨ ¬𝐿[𝑠+ 1] ∨ 𝑡 < 0

If Vampire later encounters ¬𝐿[𝑡′], it applies induction with the same axiom (2) on it, since the
resulting clauses will be different — they will contain 𝑡′ instead of 𝑡. However, to do that, the



negated antecedent of (2) needs to be clausified and Skolemized twice. Vampire can therefore
apply symbol reuse to obtain the clauses:

¬𝐿[0] ∨ 𝑠 ≥ 0 ∨ 𝑡′ < 0

¬𝐿[0] ∨ 𝐿[𝑠] ∨ 𝑡′ < 0

¬𝐿[0] ∨ ¬𝐿[𝑠+ 1] ∨ 𝑡′ < 0

with the same Skolem constant 𝑠 as in (4). In this way, symbol reuse has the potential to reduce
work when using some integer induction rules. For example, on one benchmark4 from the
inductive benchmark set [22], Vampire can reuse 6 Skolem constants, and generates only 1430
clauses to find a proof compared to 1737 without symbol reuse.

4. Future Schemes

If 𝐹 ≡ 𝐺, then the same symbol can be used to stand for 𝐹 or 𝐺. However, since this criterion
is undecidable for first-order logic, we suggest some more-pragmatic schemes below that we
have not yet implemented. If, on the other hand, reusing symbols is of paramount importance,
sub-formulae are typically small and the criterion easy compared to the main problem, then
determining 𝐹 ≡ 𝐺 with the theorem prover itself may be an option.

4.1. Normalised Formulae and AC Operators

Our existing scheme to detect 𝛼-equivalence (§2.2) still cannot identify even some trivially-
equivalent formulae: consider e.g. 𝐹 ∧𝐺 ≡ 𝐺∧𝐹 . By a suitable choice of key function it would
be possible to identify some such cases with little computational effort. More aggressive schemes
are possible in exchange for more computation, such as with the key “sorted conjunctive normal
form”. We note that even more care must be taken with free variables (refer §2.3) as the order
of occurrence of variables may be changed in the resulting keys. We suspect this scheme may
be particularly useful when considering clausification during proof search [23].

4.2. Generalisation and Instantiation

The schemes discussed so far cannot reuse symbols for the following scenario. Suppose that we
have an often-repeated formula 𝐹 [𝑡𝑖] containing a series of different terms 𝑡𝑖: 𝐹 [𝑡1], 𝐹 [𝑡2] and
so on, and that we wish to introduce symbols to represent these formulae. Such formulae are
quite common in common-sense reasoning over large knowledge bases, such as those exported
from SUMO [24].

To fix this shortcoming, we can generalise 𝐹 [𝑡𝑖] to 𝐹 [𝑥] for some fresh variable 𝑥, introduce
a single symbol 𝑠(𝑥) and use 𝑠(𝑡𝑖) to represent each 𝐹 [𝑡𝑖]. However, producing candidate
generalisations from a set of formulae is not easy to implement efficiently, and application of
this technique would be necessarily heuristic since it is not clear which generalisation(s) are best

4https://github.com/vprover/inductive_benchmarks/blob/master/benchmarks/int/val/smt2/declared_axall_
conjall_valconst_unint.smt2

https://github.com/vprover/inductive_benchmarks/blob/master/benchmarks/int/val/smt2/declared_axall_conjall_valconst_unint.smt2
https://github.com/vprover/inductive_benchmarks/blob/master/benchmarks/int/val/smt2/declared_axall_conjall_valconst_unint.smt2


for proof search. An alternative is to maximally generalise 𝑘gen(𝐹 ) such that no non-variable
terms occur in it. For example, consider

𝐹 ≡ 𝑃 (𝑐, 𝑔(𝑑)) ∧ ¬𝑄(𝑐, 𝑥)

Then, the reuse key is
𝑘gen(𝐹 ) = 𝑃 (𝑥0, 𝑥1) ∧ ¬𝑄(𝑥2, 𝑥3)

and the term 𝑠(𝑐, 𝑔(𝑑), 𝑐, 𝑥) can be used to represent 𝐹 . While the potential for symbol reuse
is very high with this approach (particularly when combined with §4.1), this technique also
increases symbol arity enormously, which is generally viewed negatively from the perspective
of system performance.

5. Related Work

Computing normal forms [1] optimised for consumption [2] by automated theorem provers is
well-studied. However, there is less work that aims to reduce the number of introduced symbols
specifically, rather than reducing number or size of clauses. Other techniques in Vampire have
achieved such a reduction as a side-effect [8, 15]. In the context of Spass [25], the technique
of generalized renaming [26] is effective at reducing the number of introduced definitions.
Generalized renaming is similar in spirit to §4.2 but with a greater degree of sophistication.

6. Conclusion

Reusing symbols is often overlooked as a topic for preprocessing, but can be effective, especially
for systems using some amount of ground reasoning. We show that even a simple form of
reuse can be practically effective in Vampire and suggest some future schemes for reusing a
greater number of symbols. The techniques proposed and evaluated here are relatively easy
to implement, despite the hazards that we highlight, and are widely-applicable to other ATP
systems.
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