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Abstract. State-of-the-art automated theorem provers explore large search spaces
with carefully-engineered routines, but most do not learn from past experience as
human mathematicians can. Unfortunately, machine-learned heuristics for theo-
rem proving are typically either fast or accurate, not both. Therefore, systems
must make a tradeoff between the quality of heuristic guidance and the reduction
in inference rate required to use it. We present a system (lazyCoP) based on lazy
paramodulation that is completely insulated from heuristic overhead, allowing the
use of even deep neural networks with no measurable reduction in inference rate.
Given 10 seconds to find proofs in a corpus of mathematics, the system improves
from 64% to 70% when trained on its own proofs.

1 Introduction

The great majority of automatic theorem provers use some kind of heuristic search. This
could be simple, such as the use of iterative deepening on a certain property to achieve
completeness [25]; complex, as in hand-engineered schemes [8]; or even learned in
some way [41]. Such heuristics are critical for system performance: an excellent heuris-
tic could find a proof in linear time1, while a poor heuristic increases search time dras-
tically. Historically these routines have been engineered, rather than learned, resulting
in fast yet disproportionately-effective heuristics like the age/weight schemes [35] used
in systems like Vampire [15, 29].

Learning a good heuristic from previous proof attempts has become more popu-
lar recently, and can achieve good results [4]. Techniques from machine learning can
approximate complex functions that are difficult to discover or write down, but this
comes at computational cost. This cost can result in an unfortunate outcome where a
learned heuristic that appears promising during testing actually degrades performance
when included in a concrete system, due to reduced inference throughput. Even assum-
ing a heuristic is both fast and accurate, it is not always clear how to gainfully include
predictions into existing target systems, particularly as a single wrong prediction can
sometimes have disastrous results. Approaches are either ad-hoc or adapt existing tech-
niques from other domains which are not necessarily well-suited to theorem proving.

This paper presents a new system specifically designed to avoid these issues. lazy-
CoP (available online2) is an automatic theorem prover for first-order logic with equal-
ity in the connection tableaux family (Section 3). The system may use a policy learned

1 achieved by only making inferences used in the eventual proof
2 https://github.com/MichaelRawson/lazycop
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end-to-end from previous proofs (Section 5) to bias a special-purpose backtracking
search (Section 4.1) toward areas the policy considers promising. Performance penal-
ties are eliminated by asynchronously evaluating the policy network on a coprocessor,
such as commodity GPU hardware (Section 4.2).

The result is a system in which learned guidance has no measurable impact on
inference rate (Section 6.1) and learns in a feedback loop from previous proofs on a set
of training problems (Section 6.2). No manual features are used for learning, and the
only manual heuristic used is “tableaux with fewer subgoals are more likely to lead to
a proof”. The system augmented with the final learned policy improves from 64% to
70% in real time under identical conditions.

2 Related Work

The rlCoP system introduced by Kaliszyk et al. [14] is the inspiration for this work and
is most similar in spirit. In rlCoP, a connection tableaux system is guided by Monte-
Carlo Tree Search (MCTS henceforth, as in work on two-player games [37]), learning
both policy and value guidance with gradient-boosted trees from hand-engineered fea-
tures. Learning from previous proofs or failures is a common approach for many differ-
ent applications of machine learning to theorem proving, avoiding the need to generate
data manually. For instance, all learned premise-selection systems we are aware of are
trained using premises used by automated systems in existing proofs [42, 12]. rlCoP
sets up a feedback loop in which new information automatically found by the system is
added to the training set in order to guide future iterations, as here.

Connection tableaux and classical first-order logic are popular settings for other
internal guidance experiments — notably monteCoP [6], rlCoP, MaLeCoP [41], FE-
MaLeCoP [13], FLoP [43] and plCoP [44] — but internal guidance for other domains
exist, including first-order saturation systems [4], SAT and QBF solvers [36, 16], and
systems for higher-order logics [1, 5, 7].

Performance is a recurring problem for systems with learned internal guidance. The
authors of rlCoP exclude some kinds of learned models for performance reasons, and
results are reported based on an inference, rather than time, limit. Loos et al. [19] report
that the main bottleneck in the guided saturation-style system E [34] is the evaluation
of inferences, and suggest a two-phase guided/unguided approach to theorem proving
with learned guidance. Asynchronous evaluation was suggested in our earlier work on
the same problem [28].

3 Unguided System

If an unguided system is completely hopeless, little progress can be made: very few
positive training data can be generated from successful proofs, and the learned guid-
ance must be better still in order to achieve reasonable performance. However, it is not
as simple as selecting a state-of-the-art theorem prover, as some are more amenable
to guidance than others. Instead, there is a spectrum of different possible research di-
rections, from attempting to guide weaker-yet-amenable systems up to meet stronger
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Fig. 1. Adding ¬P (s̄) ∨ L̄ to a tableau where P (t̄) is the current goal. The left tableau shows
conventional “strict” extension, the right LPCT “lazy” extension.

unguided systems, to integrating learning into already-strong systems which are not so
easily improved by guidance.

The guidance scheme suggested here is designed for backtracking search, such as
that found in systems based on connection calculi [18]. It is not clear how this could
be adapted to a saturation theorem prover such as Vampire or E, which employ proof-
confluent search with a time-sensitive choice point at the selection of a given clause. The
basic system must therefore be as strong as possible while still allowing backtracking
policy-guided search, and lazyCoP is purpose-built for this. A prototype version [31]
entered the most recent CASC competition [39], and subsequent developments includ-
ing a dedicated clausification routine have significantly improved performance.

3.1 Connection Tableaux

lazyCoP belongs to the connection-tableaux/model-elimination family [18] of theorem
provers, which includes systems such as leanCoP [25] and SETHEO [2]. Such systems
aim to refute a proposition by building a closed tableau: a tree of case-splits such that
every path through the tree ends in a contradiction. Connection tableaux reduce the
search space by constraining tableaux such that each addition to any given tableau must
be connected in some way to the current leaf3, as shown on the left-hand side of Figure 1
where P (t̄) connects to ¬P (s̄). To prove a conjecture, it suffices to begin with the
negated conjecture and build a closed tableau refuting it.

Since there is often more than one possible next step in building a tableau, not all of
which lead to a proof, it is necessary to backtrack if a misstep is made. Typical connec-
tion systems often use some kind of iterative deepening to maintain completeness, but
any fair scheme works: rlCoP uses MCTS for this purpose.

3.2 Lazy Paramodulation

Reasoning with equality has traditionally been a weak point of connection systems. The
most widespread method for efficiently reasoning with equality, paramodulation [22],

3 Usually this means that when adding a clause, there must be a literal with opposite sign that
unifies with a leaf literal. Lazy paramodulation extends this notion to equality reasoning.



4 Michael Rawson and Giles Reger

is incomplete in the obvious formulation for connection tableaux due to insufficient
flexibility in the order of inferences. There have been various attempts to remedy this
deficit, but as yet there is no conclusive solution.

lazyCoP uses the “lazy paramodulation” proof calculus LPCT [27], which relaxes
some of the classical connection-tableaux rules in exchange for a paramodulation-like
rule and some extra refinements. The basic idea is delaying unification to allow rewrit-
ing terms in the resulting disequations. For example, in the right-hand side of Figure 1,
it is not required that P (t̄) unify with P (s̄) immediately as in the classical calculus,
instead deducing that at least one of the terms must not be equal. Terms may still be
unified with a reflexivity rule dispatching goals of the form t ̸= s.

This implementation detail of lazyCoP is not the main focus of this work: the vital
feature of the proof calculus is backtracking proof search.

3.3 Calculus Refinements

To improve performance against the pure calculus, lazyCoP implements a number of
well-known refinements of the classical predicate calculus (which are lifted to equali-
ties where appropriate), including tautology deletion, various regularity conditions, and
folding up [17], a way of re-using proofs of literals. Additionally, it is frequently the case
that a unification is “lazy” when it could have been “strict” — such as in the case with
no equality. lazyCoP therefore implements “lazy” and “strict” versions of every rele-
vant inference rule, which shortens some proofs considerably. The resulting duplication
is eliminated by not permitting “lazy” rules to simulate their “strict” counterparts.

It is not clear whether some refinements help or hinder the learned-guidance sce-
nario. Some are definite improvements: folding up and strict rules decrease proof lengths
and therefore increase the potential benefit of learned guidance. However, others, such
as the regularity condition or the term ordering constraints in LPCT, are not as clear-
cut. In some cases such refinements lengthen proofs significantly, outweighing the prun-
ing effect, and previous work shows that guidance can partially replace these pruning
mechanisms [9]. We leave all refinements switched on for this approach, but allowing
the learned policy a greater amount of freedom is an interesting future direction.

Some techniques such as restricted backtracking [26] sacrifice completeness for
performance. lazyCoP does not implement any approach known to be incomplete4: all
problems attempted can be solved in principle.

4 Proof Search

Given a learned policy5, we aim to use it to improve proof search outcomes. The policy
π (a | n) is a function from a tableau n and possible inferences a to a probability distri-
bution. We work with an explicit search tree, each node of the tree representing an open

4 It is not known whether lazyCoP’s calculus with refinements is complete. For instance and
to the best of our knowledge, Paskevich [27] leaves the compatibility of lazy paramodulation
with the regularity condition an open question.

5 no value function is employed: it is unclear how to adapt this to asynchronous evaluation, or
how useful this would be in an asynchronous context
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tableau, although tableaux are not actually kept in memory for efficiency reasons. From
each open tableau, there is a positive non-zero number of possible inferences (or actions
in the reinforcement learning literature) which may be applied to generate a new child
tableau. Nodes with zero possible inferences cannot be closed and are pruned from the
tree. The root of the tree is an empty tableau, from which possible inferences are the
start clauses, in this case clauses derived from the conjecture.

4.1 Policy-Guided Search

There are many possible tree search algorithms which can include some kind of learned
heuristic. We experimented with the classical A∗ informed-search procedure, although
we found that it was difficult to learn a good heuristic function that was neither too
conservative nor too aggressive. Other approaches might include the aforementioned
MCTS, single-player adaptations of MCTS [33] single-agent approaches like that of
LevinTS or LubyTS [24], or simply following a stochastic policy with restarts if no
proof is found at some depth. While these approaches are no doubt interesting and
provide theoretical guarantees, we did not find them to be necessary for our case.

Instead, we could simply employ best-first search, expanding the leaf node that the
policy considers most likely first. If a leaf node n was obtained by taking actions ai
from ancestor nodes ni, select

argmax
n

∏
i

π (ai | ni)

Unfortunately, this simple scheme is not likely to recover if π makes a confident mis-
prediction, and is even incomplete if any node has an infinite chain of single children
beneath, where π (aj | nj) = 1 by definition. To correct this issue we take inspira-
tion from rlCoP’s initial value heuristic, where tableaux are exponentially less likely
to be closed the more open branches they have. We model this idea as an exponential
distribution

p(n) = λe−λg(n)

where λ is a tunable parameter (set to 1 in our experiments here) and g(n) is “num-
ber of open branches plus length of the path”. Including “length of the path” in g(n)
makes little practical difference and makes the search procedure complete again. The
two estimates are combined with a geometric mean so that nodes are selected by

argmax
n

√
p(n)

∏
i

π (ai | ni)

In practice this expression is numerically difficult to evaluate, but in logarithmic space
it is better-behaved, producing the final expansion criterion

argmax
n

[(∑
i

lnπ (ai | ni)

)
− λg(n)

]
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4.2 Asynchronous Policy Evaluation

The proof search routine above assumes that the policy is evaluated synchronously for
each expanded node. As discussed in the introductory sections, this has a significant
impact on performance, particularly so for computationally-expensive policies. Instead,
evaluation is deferred and a separate CPU thread continuously arranges for nodes to be
processed on a GPU, selecting the first non-evaluated node on the path to the current
best leaf node. π (a | n) is set to 1 for nodes not yet evaluated: applying a uniform
distribution does not work well in practice.

It does not appear to be particularly important that all nodes are evaluated for a
learned policy to improve search, perhaps because guidance at the top of the search tree
has a disproportionate effect. Asynchronous policy evaluation allows use of policies
that are orders of magnitude slower than expansion steps without reduction in inference
rate.

5 Learned Policy

Section 4.1 describes biasing proof search with a learned policy, directing node expan-
sions toward areas the policy considers useful. lazyCoP’s policy is trained from its own
proofs — at each non-trivial step6 in a proof we record three things: (i) the tableau, (ii)
available actions, and (iii) the action that lead to a proof. This procedure produces a
training set of tableaux and actions which we use to train a neural-network based policy
to predict the correct action. Learning from existing proofs in this way has advantages
and disadvantages: each example’s label is guaranteed to lead to a proof, but it is not
necessarily the shortest proof, nor can the training data express preference amongst
other actions.

We train and evaluate using the same set of problems from the MPTP transla-
tion [40] of the Mizar Mathematical Library [10] into first-order logic with equality.
There are 32,524 problems in total in the M40k set; we use the M2k subset of 2003
problems in order to iterate quickly. All problems have a labelled conjecture which
lazyCoP is able to exploit so that search proceeds backward from the conjecture. Prob-
lems from the M2k set come from related articles in Mizar, suggesting a degree of
similarity which may be exploited by learning.

5.1 Representing Tableaux with Actions

There are many possible ways to represent first-order logical data in neural networks.
We use directed graphs paired with residual graph convolutions, as introduced for other
similar tasks [30]. This approach has significant advantages for a first-order tableau sys-
tem such as lazyCoP as it allows reconstructing an equivalent tableau (up to renaming)
from a compact, pre-parsed representation invariant up to e.g. variable names.

Construction of directed graphs from tableaux is mostly typical for first-order rep-
resentations [42], with a few problem-specific modifications. First, while occurrences
of identical symbols and variables share nodes in the graph, identical compound terms

6 that is, states with more than one possible action
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Fig. 3. Network diagram. As there is no pooling of any kind, data is processed at the node level
until action nodes marked (*) are projected out.

do not: this is because they may be rewritten by equalities separately in LPCT. Ad-
ditionally, variable binding is non-destructive in LPCT to implement a form of basic
paramodulation. Bound variables therefore remain in place but have an outgoing edge
attached to their binding.

Encoding actions is then straightforward. lazyCoP implements a small number of
inference rules, such as reductions, extensions, reflexivity and so on. Each inference is
attached to some terms or literals in the tableau to form a concrete action: rewriting
t = s in L[p], for example, is represented as a node connected to the graph with an
incoming edge from t and outgoing edge from p, uniquely identifying the inference.

5.2 Network Architecture

We use a residual version of the directed graph networks introduced in previous work [30]
which allow the network to distinguish incoming and outgoing edges. The core of the
network is the residual block shown in Figure 2: this allows one round of message-
passing from neighbouring nodes in the graph, treating incoming and outgoing edges
separately before combining the results for the next layer. Batch normalisation [11]
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Table 1. Network and training hyper-parameters.

Parameter Value Parameter Value

node dimension 64 initial learning rate 0.01
residual layers 24 cycle batches 2000

batch size 64
momentum 0.9
weight decay 0.0001

is inserted before the linear part of the convolution. The theoretical merits of this are
unclear but it works well in practice. The complete network (Figure 3) is, in order:

Embedding. An embedding layer projects integer node labels into a real vector of the
same size used in the convolutional layers.

Convolution layers. Several residual blocks combine and transform feature maps from
neighbouring nodes, producing in particular a real vector for each action node.

Action projection. The vector for each action node is projected out, all other nodes are
discarded at this point.

Output layer. Computes a single output value for each action.

Rectified linear units are used as non-linearities throughout.

5.3 Training

Training such a network on limited training examples from early iterations is challeng-
ing due to its tendency to memorise the training set if sufficient parameters are available
and underfit drastically if they are not. This is perhaps a good argument for feature-
based learning rather than the end-to-end approach we take here. However, the network
can be made to train somewhat effectively by cosine annealing a high initial learning
rate to 0 with “warm restarts” [20], repeating after a certain number of mini-batches.
This has two benefits: the regularising effect of high learning rates somewhat reduces
overfitting, and the network also trains faster.

5.4 Integration and Optimisation

After the network is trained, network weights are compiled into lazyCoP. The forward
pass is re-implemented from scratch in CUDA [23], allowing a number of optimisations
such as known array sizes, re-use of allocated buffers and the ability to profile for the
specific workload. Additionally, batch normalisation layers’ forward operation can be
fused into the subsequent layer in this case, decreasing implementation complexity and
increasing performance.

6 Experimental Results

We investigate two areas of practical interest: the effect of learned policy evaluations
on inference rate, and whether this learning translates into improved performance on
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Table 2. Results from iterative training of lazyCoP’s policy on M2k.

# Proved Cumulative Steps

0 1,289 1,289 16,880
1 1,390 1,406 19,394
2 1,402 1,419 19,700
3 1,403 1,426 19,881

a training set of problems. Systems are only allowed 10 seconds of real time: this is
relatively short, but a good approximation to real-world settings in which users of auto-
matic “hammers” included in interactive theorem proving systems are unwilling to wait
much longer than 30 seconds [3].

6.1 Inference Rates

There is no measurable decrease in inference rate when learned guidance is switched on.
Occasionally the rate of inference even improves, perhaps due to guidance producing ar-
eas which are less productive or otherwise easier to explore. Running on TOP001-1, a
non-theorem mid-sized topology problem from TPTP [38], unguided lazyCoP achieves
around 62,000 expansions per second for 10 seconds at the time of writing on desktop
hardware. Guided, the system evaluates around 200 policies per second and reaches
inference speeds in excess of 70,000 expansions per second.

6.2 Effect of Guidance

We train lazyCoP iteratively on M2k as described in Section 5, training each iteration
on the proofs produced by all previous iterations. Iteration 0 does not have access to a
learned policy, iteration 1’s policy is trained on iteration 0’s proofs, iteration 2 on proofs
from both iteration 0 and 1, etc. If there are two proofs for the same problem, the shorter
proof is retained. The system is given 10 seconds of real time per problem, measured
from program startup to the point of discovering a proof (but before output begins), and
16GB memory on a desktop machine7. Table 2 shows the number of problems solved
by that iteration, the number of problems proved by all previous iterations, and the total
number of proof steps for training available after the iteration finishes.

7 Conclusion and Future Work

We have introduced a new system, lazyCoP which combines a lazy paramodulation-
based connection tableau prover with lazy neural guidance. The neural guidance im-
proves the underlying search from 64% to 70% without any measurable impact on in-
ference rate. There are several future directions we will consider pursuing:

7 Intel® Core™ i7-6700 CPU @ 3.40GHz, NVIDIA® GeForce® GT 730
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Scaling network and problem sets. It is very possible that a larger/deeper policy net-
work would allow learning even better policies. This requires either more careful
tuning or a larger set of problems such as M40k to avoid overfitting excessively.

Parallelism. Implementing both parallel search and parallel evaluation on today’s mul-
ticore machines would have a beneficial impact on performance. Parallel search
allows exploiting remaining cores to search faster and is a clear win, the explicit
search tree of lazyCoP allowing for several easy schemes to inject parallelism. Par-
allel evaluation does not inherently improve performance, but does ensure that the
coprocessor is always kept busy: at present there are short pauses while the evalu-
ation thread propagates the previous evaluation and prepares another input. Using
multiple host threads also allows hiding latency from e.g. coprocessor cache misses,
increasing overall throughput at the expense of the speed of single evaluation.

Incomplete modes. A system does not necessarily have to be complete to be use-
ful [21]. leanCoP includes a powerful but incomplete restricted-backtracking mode,
for example. As well as e.g. restricted backtracking, lazyCoP could implement a
strategy in which parts of the search tree are progressively discarded as resource
limits draw nearer, in a similar way to Vampire’s limited resource strategy [32]. We
expect this to help with finding extremely long proofs.

Generality. An anonymous reviewer suggested that with a little more effort this work
could become a standalone tool for advising existing (backtracking) systems. We
agree and thank the reviewer for the suggestion, although we also agree with the
reviewer’s assessment that existing systems would need to be modified somewhat.
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41. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP: machine learning connection prover. In: In-
ternational Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods. pp. 263–277. Springer (2011)

42. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by deep graph
embedding. In: Advances in Neural Information Processing Systems. pp. 2786–2796 (2017)
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