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Abstract. We investigate the integration of SAT technology into clausal
connection-tableau systems for classical first-order logic. Clauses present
in tableaux during backtracking search are heuristically grounded and
added to an incremental SAT solver. If the solver reports an unsatisfiable
set of ground clauses at any point, search may be halted and a proof
reported. This technique alone is surprisingly effective, but also supports
further refinements “for free”. In particular we further investigate depth
control of randomised search based on grounded clauses, and a kind of
ground lemmata rule derived from the partial SAT model.
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1 Introduction

The style of heuristic search in backtracking/iterative-deepening theorem provers
for first-order logic, often used in conjunction with connection tableaux, is very
different from the search found in saturation-style systems, often used with su-
perposition calculi. Both approaches have their strengths and weaknesses, and
typically perform well on different kinds of domains and problems.

One possible weakness of backtracking systems is that very little search effort
expended in failing to find a proof can be reused, and in fact many popular back-
tracking systems “learn” almost nothing as search progresses. Contrast this with
saturation systems, where deduced formulae are typically retained indefinitely,
and even formulae not used in the final proof can aid proof search via mecha-
nisms such as subsumption. Fixing this defect in backtracking systems generally
and efficiently is not easy, and if taken to extremes results in a saturation system.

However, ground reasoning is typically more efficient than full first-order
reasoning. This suggests something of a compromise: first-order search remains
backtracking in nature, but a ground approximation to first-order information is
retained and used to aid future first-order search. More concretely, we heuristi-
cally ground the clauses that make up tableaux constructed during backtracking
search, then insert these grounded clauses into an incremental SAT solver, where
they stay for the entire duration of proof search.

This extra effort is compensated by the ability to report proofs found at the
ground level (Section 4); a good heuristic for controlling a combination of re-
stricted backtracking, randomisation and iterative deepening (Section 5); and a
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partial assignment of literals that can be skipped, focussing proof search (Sec-
tion 6). We build a testbed system (Section 3) and experimentally evaluate our
approach against a baseline and other systems (Section 8), showing that the
overhead of grounding clauses pays off handsomely in practice.

2 Preliminaries

The following relates to fully-automatic theorem provers for classical first-order
logic (with equality) with the usual syntax and semantics [46]. We focus par-
ticularly on systems implementing connection tableaux calculi and systems that
use ground reasoning tools such as SAT or SMT solvers to accelerate or improve
first-order search.

2.1 Connection Tableau Systems

The connection tableau1 calculus [27] is chiefly a restriction on clausal free-
variable tableaux requiring all additions to tableaux be connected to leaf literals:
that is, extension clauses must contain a unifiable literal of opposite sign. This
is an extremely strong restriction on general clause tableaux, which remains
complete but loses proof confluence, necessitating backtracking search to build
closed connection tableaux. Backtracking may be reduced in exchange for a loss
of completeness with restricted backtracking schemes [32]. Figure 1 shows the
basic rules of the calculus: tableaux begin with a start clause; a leaf may be
closed by reduction if there is a unifiable literal of opposite sign in the current
branch; and extension clauses may be added to the tableau if they are connected
to the current leaf literal.

Competitive connection systems such as the SEquential THEOrem prover
SETHEO [5] and, later, leanCoP [31] typically employ a number of optimising
preprocessing steps, calculus refinements, search heuristics and efficient imple-
mentation techniques to improve performance on problems of interest. We note
here a whole area of research designed to re-use work performed in other areas of
backtracking search, such as failure caching [27], to which our work has similar
aims but a different method.

As well as good performance in exchange for little complexity, such systems
have a number of advantages: they are simple to implement (particularly in Pro-
log), often leading to a relatively small “trusted computing base” which can be
easily certified [23, 51]; they cope well with a large number of axioms due to a
goal-directed search style; and their memory use remains low, or even constant.
They can often be adapted for other domains and research areas, such as intu-
itionistic logic [31], modal logic [33], non-clausal reasoning [34], machine learning
for theorem proving [17, 22], and low-resource computing [35].

1 also known as, or closely related to, the connection method [6], model elimination [28],
and/or the method of matings [2]
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Fig. 1. The three inference rules of the clausal connection tableau calculus: start, re-
duction, and extension. In the start and extension rules, C = L1 ∨ L2 ∨ . . . ∨ Ln is a
fresh copy of a clause. In the reduction and extension rules, the global unifier is refined
such that σ(¬L) = σ(L1). i.e. L and L1 are connected (illustrated by dashed lines).

2.2 Boolean Satisfiability

Boolean satisfiability (SAT) is a well-known NP-complete problem [10]. We will
concisely phrase the problem as “given a set of propositional clauses, find an
assignment of propositional variables such that each clause is satisfied, or report
their unsatisfiability”. Despite the computational difficulty, SAT solvers have im-
proved rapidly [9] and can now quickly solve SAT instances previously considered
impractically large or hard [3]. Arguably the major driving force behind this im-
provement is the realisation that most useful problems are not merely random,
but contain structure that can be exploited by carefully-designed heuristics.

One such heuristic, conflict-driven clause learning (CDCL), in which new
clauses are “learned” from a certain conflicting section of search space, is par-
ticularly effective [29]. It also allows for SAT solvers to become incremental, so
that recomputing satisfiability as new clauses are added to the set is a cheaper
operation. SAT is also often used as an “assembly language” for richer or harder
problems. We discuss SAT for aiding first-order reasoning below, but Satisfi-
ability Modulo Theories (SMT) [14] and bounded model checking [8] are two
well-known applications from other domains.

2.3 Ground Support for First-Order Reasoning

The use of SAT solvers to provide ground support within first-order reasoning has
been previously explored in various ways. In some approaches the main reasoning
method is by reduction to SAT. For example, finite model finding methods [12,
40] iteratively ground a first-order problem with a growing set of domain con-
stants in order to find a finite model. Or the Instance Generation calculus [24, 25],
which approximates the unsatisfiability problem for sets of first-order clauses by
a sequence of propositional problems: a propositional abstraction is iteratively
refined by the addition of new instances. More näıvely, there are also cases where
near-propositional problems can be decided directly via grounding [43]. Going
beyond first-order reasoning, Satallax [11] is a a higher-order prover that reasons
via reduction to a series of SAT problems.
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The previous approaches use SAT solvers as black boxes, as opposed to the
more fine-grained approach taken by the Model Evolution Calculus [4] which
interleaves instance generation with DPLL-style reasoning. In an unusual twist,
the CHEWTPTP system uses a clever incremental ground encoding [15] of con-
nection tableaux search such that at some point the ground solver may return
propositional assignments representing closed connection tableaux.

Other first-order reasoning methods utilise SAT solvers to aid a separate
proof search method, as in this paper. The AVATAR [49, 37] framework im-
plemented within Vampire [26, 38] uses a SAT or SMT solver to organise the
process of clause splitting within saturation-based search. The global subsump-
tion simplification technique [24, 39] uses a SAT solver to replace a clause by a
subclause if the subclause holds globally, which can be under-approximated by
propositional reasoning.

Finally, the saturation-based E theorem prover [45] has been extended with
a lightweight technique that periodically grounds the search space and checks
for propositional unsatisfiability [44]. This work is closest to what we propose in
this work but in the context of saturation-based methods.

2.4 First-Order Benchmarks

We use several first-order benchmark problem sets to evaluate work experimen-
tally. By “TPTP”, we mean the provable FOF fragment (7,609 problems) of
the Thousands of Problems for Theorem Provers set [47] 7.3.0. The MPTP2078
challenge [1] provides 2078 problems translated from the Mizar Mathematical Li-
brary [18] by the MPTP system [48], in two forms: “bushy”, where problems are
typically smaller and contain only relevant premises; and “chainy” where prob-
lems contain all preceding results. M2k is a slightly-easier set of 2003 related
problems used for development [22], also originating from Mizar and MPTP.

3 Research Vehicle: SATCoP

We require a testbed for our experiments with the techniques outlined. In prin-
ciple we could have modified e.g. leanCoP to take advantage of the “lean Prolog
technology” approach (and we hope to explore this direction in future), but for
these first experiments we found it easier to use an imperative language and our
own system. We refer to the basic system described below as SATCoP0, and to
the system improved with additional SAT-based techniques as SATCoP.

SATCoP0 implements the clausal connection tableau calculus. A simple clause
normal form translation without definitions [32] translates general first-order for-
mulae into clauses, and equality (if present) is then axiomatised in the usual way.
No other preprocessing, such as reordering of clauses, takes place. Search starts
with clauses derived from the conjecture2, and proceeds by iterative deepening

2 Unless there are no such clauses or all clauses stem from the conjecture, in which
case positive clauses are used instead.
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Algorithm 1: sketch of the basic SATCoP0 search routine

σU = ∅; // global tableaux-level unifier, modified by unify()

limit = 0; // depth limit for iterative deepening

function start() : bool is
loop

foreach C ∈ start clauses do
if prove-all(ϵ, C) then return true ;
σU = ∅; // reset σU to try again

limit = limit + 1;

function prove-all(path, clause) : bool is
foreach literal ∈ clause do

if ¬prove(path, literal) then return false ;
return true

function prove(path, goal) is
// apply the reduction rule (restricted backtracking)

foreach L ∈ path do
if sign(goal) ̸= sign(L) and unify(goal, ¬L) then return true ;

// limit search depth

if |path| ≥ limit then return false ;

// apply the extension rule (restricted backtracking)

σ′
U = σU ;

foreach fresh copy C of a problem clause do
foreach L ∈ C do

if sign(goal) ̸= sign(L) and unify(goal, ¬L) then
if prove-all(append(path, goal), C \ {L}) then return true ;
σU = σ′

U ; // reset σU to try again

continue

on the length of the path. When trying to close a branch, reduction steps are
tried before extension steps, and backtracking is restricted [32] in the style that
Färber calls REI in his description of backtracking schemes [16]. The regularity
condition [27] is enforced and some clause-level tautologies are eliminated. No
intra-tableau mechanisms for re-use of intermediate results (such as lemmata or
folding up) are implemented as this would overlap somewhat with Section 6,
but in principle nothing prevents implementing this for further performance.
For readers not familiar with connection systems and restricted backtracking,
Algorithm 1 provides a sketch of the search routine.

The concrete system owes many implementation techniques to the Bare Metal
Tableaux Prover [21]. In any case, the precise details of the basic system are
not critically important here: we present the effect of each different techniques
and final performance by experimental evaluation in Section 8. We expect these
methods to be generally applicable to similar connection systems, at least for
classical first-order logic, given a careful implementation.
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4 Grounding Clausal Tableaux

A clausal tableaux (not necessarily closed) is built from instances of clauses de-
rived from the negated input problem. In the first-order case, tableau variables
represent a concrete ground term that is yet to be fully determined. As a re-
sult, any given tableaux represents a multiset of partially-instantiated clauses.
Tableaux operations have pleasant interpretations in this setting: clauses added
to tableaux are added to the set, and unifications within the tableau monotoni-
cally refine the instantiation of clauses in the set.

Backtracking search for closed clausal tableaux can therefore be seen as pro-
ducing a stream of clauses with various instantiations: each inference rule pro-
duces a tableau built from a certain multiset of clauses, each of which can be
fed into the stream. It is a sound deduction to apply any grounding substitution
scheme to each clause, mapping remaining variables to ground terms.

To see this, consider a clause C in the input problem containing variables x̄.
During backtracking search, C is added to the tableau by applying a renaming
substitution σR, mapping x̄ to variables fresh for the tableau. Then, a number
of unification steps results in a tableau-level unifier σU from tableau variables to
arbitrary terms constructed over the signature and tableau variables. Finally, a
grounding substitution σG maps tableau variables to arbitrary members of the
Herbrand universe. Trivially, the composite substitution σ = σG ◦ σU ◦ σR is a
grounding substitution and

(∀x̄.C) ⇒ Cσ

is a tautology, so Cσ is both a ground clause and a valid deduction from ∀x̄.C.
Ground atoms can be bijectively mapped to propositional variables, obtaining

a propositional approximation to the partially-instantiated clause present in the
tableau. In this way, backtracking tableaux search over premises produces a
stream of ground clauses such that if the ground approximation is unsatisfiable,
so are the premises.

4.1 Reporting Unsatisfiability

This stream of ground clauses does not seem immediately useful. However, by
inserting this stream of grounded clauses into a SAT solver, it can report when
the clauses seen so far are unsatisfiable, witnessing a proof. Often this state
occurs significantly before finding a closed connection tableau, which makes the
technique potentially useful. We modify the basic system to perform an iterative
deepening step, generating a large number of clauses from backtracking, and
inserting clauses continuously. Before increasing the depth limit, we first query
the SAT solver to check the current status. This appears to be a good tradeoff
between reporting unsatisfiability early, and wastefully querying the solver.

4.2 Grounding Schemes

There are a large number of possible choices for the grounding scheme σG, and
in fact using a whole family of grounding schemes to ground each clause multiply
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is sound, if potentially wasteful. The simplest scheme is to map every variable
to a fresh constant, and in fact this works quite well immediately. Schulz [44]
suggests choosing the most frequent constant from the conjecture, and we use
this suggestion here, achieving a slight increase in performance over the sim-
ple scheme. If there is no constant in the conjecture, we fall back to the fresh
constant.

4.3 SAT Solving

SAT solving, rather than the grounding procedure or backtracking search, is
by far the biggest bottleneck in the resulting system. Additionally, the SAT
instances generated by our approach are quite unusual: there are a large number
of propositional variables, but conflicts are relatively rare until the clause set
becomes unsatisfiable. Further, when new clauses are added, the existing model
can often be extended to satisfy the new clauses without backtracking. When the
clauses do become unsatisfiable, the unsatisfiable core is typically fairly small
compared to the clause space.

After some initial experimentation with an off-the-shelf solver, PicoSAT [7],
we found that in this specific case we can improve performance by implement-
ing a custom SAT routine. We stress that we do not claim to improve on e.g.
PicoSAT’s general SAT performance or any similar claim. The custom routine
is a more-or-less standard CDCL solver, with the following tweaks:

– The only possible mode is incremental.
– The next decision variable is always chosen as the unassigned variable first

produced from proof search. This is both cheap to implement and difficult
to beat with more sophisticated heuristics such as VSIDS, we hypothesise
because variables introduced sooner are “closer to the conjecture”.

– Conflict analysis backtracks through (and possibly resolves with) the entire
trail, effectively restarting after every conflict. Since conflicts happen rarely,
but it is critical that forced variables are assigned as soon as possible to
avoid more conflicts later, this seems to be a good tradeoff in practice.

– The solver does not automatically restart on receiving new clauses. First,
it tries to satisfy the new clauses by extending the current assignment, and
only if a conflict is reached does it restart.

– Since conflicts are rare and the clause space is already huge, no effort is made
to delete the relatively-small number of learned clauses.

4.4 A Note on Proofs

Connection tableau systems have access to an obvious and explicit proof object,
the closed tableau. Typically this is also the smallest such with respect to the
iterative deepening condition. Unfortunately, this is not the case here: to write a
proof we must first obtain an unsatisfiable core (not necessarily minimal, but the
smaller the better) from the SAT solver. By storing both the first-order atom
that corresponds to a propositional variable, and the first-order premise that
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was instantiated to a propositional clause, an unsatisfiable set of ground instan-
tiations of first-order clauses can be reported in exchange for a small amount of
memory. These can be transformed into a proof by a ground reasoning system.

5 Randomisation and Depth Control

Randomisation of the search order is known to markedly increase performance of
connection systems in the presence of restricted backtracking, exploited to great
effect in the randoCoP system [36]. The idea here is roughly that if restricted
backtracking renders a connection system unable to close a tableau, changing the
order of clauses or the order of literals within those clauses may help as a different
part of search space is explored. We found a modification of this idea particularly
helpful for SATCoP and further allows a powerful depth-control heuristic.

randoCoP randomises both the order of premises and the order of literals
within clauses, then runs the leanCoP-based core uninterrupted on the resulting
problem, restarting from scratch frequently. Restarting from scratch is not so
helpful in our case as we lose the propositional information we have worked so
hard to achieve. It can also be wasteful with very large axiom sets as the entire
set must be shuffled repeatedly, even though most will not be touched.

Instead, we take an ad-hoc randomisation approach: when there is a list of
literals or clauses to be tried, we shuffle them3. We shuffle the order of literals in
start or extension clauses, and also the order in which extensions are tried. The
order in which the path is traversed looking for reductions is another possible
shuffling area, but this does not seem to make much difference in practice.

Randomising search means that it is very likely that after an iterative deep-
ening step generates some propositional clauses, running another iterative deep-
ening step at the same level will still yield more propositional clauses from a
different part of the search space found by randomisation. This feature of search
suggests an optimisation: remain at the same iterative deepening level until no
more new propositional clauses are found. As the next iterative deepening level
has potentially exponentially many more states to explore, only increasing the
search depth when absolutely necessary can be helpful.

6 Model-Based Lemmata

Our final technique is perhaps the most interesting, but easiest to explain. In
order to reach an unsatisfiable set of ground clauses, the SAT solver’s model must
be forced to change until no more models are available. With this in mind, if we
have a goal literal G at the leaf of a connection tableau, and its corresponding
propositional literal is assigned false in the current model, refuting it will not
change the model and is wasted effort from this perspective. To avoid this, we
consider ground literals that are assigned false at the SAT level to be solved and
skip them, in a similar way to the lemmata refinement for connection tableaux.

3 pseudo-random shuffle such that results are reproducible
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Fig. 2. If the abstraction of a ground goal G is assigned false in the current SAT model,
refuting it can be skipped, as this will not force a change in the model. Generalising,
if any ground path literal P is assigned false, the whole sub-tableau can be skipped.

We call this technique “model-based lemmata” due to this similarity, but the
effect on proof search is not as clear. Literals may change assignment several
times during proof search, although if refuted by a sub-tableau the literal will be
forced false. Further, it is no longer sound to consider closed tableaux as a proof,
as they may contain ground literals that have been skipped and therefore we can
rely only on the SAT solver reporting unsatisfiability. An interesting side-effect
is that iterative deepening steps do not take as long due to skipped literals: this
may well have a positive effect on proof search by itself.

There is also a natural generalisation of this idea which we implement: if there
are path literals P1, P2, . . . Pn available and the goal literal is G, we essentially try
to refute the conjunction P1∧P2∧. . .∧Pn∧G, or to show P1∧P2∧. . .∧Pn ⇒ ¬G
if you prefer. If any of the path literals Pi become ground and assigned false
through unification, these can also be skipped, closing an entire sub-tableau.
The general idea is illustrated in Figure 2.

7 First Impressions

Algorithm 2 extends that given in Algorithm 1 with the additions discussed in
Sections 4–6. New lines are marked with a →. The resulting system is imple-
mented in Rust and is available online4.

Initial impressions of the resulting system are positive. Compared to the
baseline system the most obvious change is an increase in memory use (SAT data
and mapping information has to be kept somewhere), but this is not typically
excessive, and is comparable to saturation systems. The majority of problems
that the baseline system solved can now be solved in fewer steps, which typically
also results in a shorter time-to-proof.

Practical performance on other problems also appears improved, particularly
in cases where the SAT approach is very helpful. PUZ010-1, “who owns the
zebra?” from the TPTP library contains a large number of nearly-ground axioms
and a completely ground conjecture formed from a large disjunction of literals.

4 https://github.com/MichaelRawson/satcop
commit 65122a99e08648f5b2e331280d0a0011e73a0836 is discussed here
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Algorithm 2: sketch of the exended SATCoP search routine

σU = ∅; // global tableaux-level unifier, modified by unify()

limit = 0; // depth limit for iterative deepening

→ ground = ∅; // set of propositional clauses produced so far

→ new = ∅; // new propositional clauses produced this iteration

→ model = ∅; // partial propositional model of ground

function start() : bool is
// add start clauses to the grounding

→ foreach clause ∈ start clauses do
→ ground = ground ∪ {(clause)σG};

loop
foreach C ∈ start clauses do

→ shuffle C;
→ prove-all(ϵ, C);

σU = ∅; // reset σU

→ if (new \ ground) ̸= ∅ then
→ ground = ground ∪ new;
→ new = ∅

else
limit = limit + 1; // only increase limit if no new clauses

→ if there is a model satisfying ground then
→ set model

else
// unsat propositional clauses: found a proof!

→ return true

function prove-all(path, clause) : bool is
foreach literal ∈ clause do

if ¬prove(path, literal) then return false ;
return true

function prove(path, goal) is
// model-based lemmata

→ foreach L ∈ path ∪ {goal} do
→ if (L)σU is ground and assigned false in model then return true;

foreach L ∈ path do
if sign(goal) ̸= sign(L) and unify(goal, ¬L) then

→ ground all clauses in the tableau and add them to new;
return true

// limit search depth

if |path| ≥ limit then return false ;

σ′
U = σU ;

→ foreach fresh copy C of a problem clause in random order do
→ shuffle C;

foreach L ∈ C do
if sign(goal) ̸= sign(L) and unify(goal, ¬L) then

→ ground all clauses in the tableau and add them to new;
if prove-all(append(path, goal), C \ {L}) then return true ;
σU = σ′

U ; // reset σU to try again

continue
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The unaided system cannot solve this problem in reasonable time5, but the
SAT-assisted system solves it near-instantaneously, producing a proof consisting
of 322 grounded clauses.

It is not only problems tailor-made for SAT, either. GRP001-2 is a unit equal-
ity version of a problem from group theory, “if the square of every element is
identity, the system is commutative”. This problem is much easier for rewrit-
ing systems that specially handle equality: Vampire solves this immediately,
but the baseline system cannot solve it at all. However, with the enhancements
described, SATCoP solves this in 4 seconds with no specialised equality handling.

8 Experimental Evaluation

We run two experiments to determine the practical effect of the preceding work.
The first runs various configurations of SATCoP to evaluate different techniques
from Sections 4–6 against each other. The second compares SATCoP against
other systems. All experiments are run on a desktop machine clocked at 3.4GHz.

8.1 System Configurations

We run the state-of-the-art saturation system Vampire [26] 4.5.1, and the strong
connection system leanCoP [31] 2.16 to provide a comparison. Both of these
systems expose options which can drastically alter proof search, and further both
provide portfolio modes in which a number of different option combinations are
tried in sequence. Inventing and evaluating good portfolios is a hard problem in
itself, which we avoid here by running all systems with a fixed set of options: we
stress that the results presented here do not necessarily reflect the “competition
strength” of a system. Vampire runs in its default mode, which entails a limited
resource strategy [41], AVATAR [49], and a number of other search parameters.
leanCoP was configured with [cut,conj] — that is, a restricted backtracking
strategy, starting from clauses relating to conjectures — which more closely
reflects SATCoP0’s strategy, but may not be the strongest available.

In the presence of large axiom sets containing extraneous axioms, satura-
tion systems can sometimes choke. SInE [19] heuristically selects some subset of
axioms that may be relevant for proving a conjecture, which can significantly
accelerate proof search, provided that no necessary axiom is removed. Vam-
pire (SInE) runs SInE-style axiom selection with an additional flag.

8.2 Results and Discussion

We use 1-second runs on the M2k set of 2003 problems throughout development
to quickly gauge practical effectiveness. Table 1 shows the effect produced by

5 It is interesting to note that the saturation-based Vampire theorem prover also fails
to solve this problem in reasonable time without support from a SAT solver.

6 run with SWI Prolog 7.6.4 [50]
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Table 1. Problems from the M2k set solved in 1 second by all possible combinations
of techniques. “grounding” is the method described in Section 4, “shuffle” the ad-hoc
randomisation described in Section 5, “depth control” the modification of iterative
deepening presented in the same section, and “model lemmata” the topic of Section 6.

grounding shuffle depth control model lemmata solved

886
✓ 998

✓ 957
✓ ✓ 1135
✓ ✓ ✓ 1173
✓ ✓ 1061
✓ ✓ ✓ 1189
✓ ✓ ✓ ✓ 1252

Table 2. Problems solved in 10 seconds by existing systems and SATCoP on a variety
of first-order benchmark sets. SATCoP0 is SATCoP without any of the techniques de-
scribed — i.e. a more standard connection system — for direct comparison.

TPTP bushy chainy
solved unique solved unique solved unique

Vampire 3650 388 1162 132 402 6
Vampire (SInE) 3013 258 781 34 550 109
leanCoP 1946 22 648 18 272 7

SATCoP0 1837 8 564 0 221 0
SATCoP 3049 282 953 52 505 101

benchmark size 7609 2078 2078

different combinations of the techniques discussed here. Note that some com-
binations are omitted as nonsensical: for example, it is not possible to control
iterative deepening as in Section 5 without grounding clauses, and without ran-
domisation it is possible but provides no benefit.

We are pleased that the union of all techniques described performs the best,
and that all produce some amount of benefit. It is interesting to note that some
combinations are disproportionately effective, suggesting a synergising effect.
Grounding clauses and randomisation gain 112 and 71 problems respectively
over SATCoP0, but combined gain 249. One might conjecture about why this
happens — perhaps randomisation produces a larger number of ground clauses
and thereby increases the likelihood of unsatisfiability — but in any event the
outcome is encouraging.

We now compare our final system SATCoP against SATCoP0 and other rep-
resentative systems. We allow a 10-second time limit and evaluate the TPTP,
“bushy” and “chainy” problem sets discussed in Section 2.4. Table 2 shows these
data: the “solved” column is the number of problems solved for a given solver/set
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combination, while “unique” is the number of problems in a set only that system
and no other solved.

9 Conclusions and Future Directions

We are pleasantly surprised at the improvement in performance achieved by
very simple application of ground reasoning techniques to a connection tableau
system. Further performance improvements can be obtained for relatively little
effort using the existing ground information, which we demonstrate through final
evaluation on a number of benchmark problem sets.

While the resulting system is not quite as concise as some of the beautiful sys-
tems achieved in Prolog, it is certainly effective and remains compact compared
to state-of-the-art saturation systems. It is also possible that future investiga-
tions could make use of the “lean Prolog technology” approach, combined either
with a Prolog implementation of CDCL [42], Prolog bindings to an existing SAT
solver [13], or even (with some modification) constraint logic programming [20].

The SAT world also merits further investigation: SAT instances generated
by our system are relatively unusual, and are mostly easily-satisfiable, until
very suddenly they are not. A WalkSAT-like solver with some amount of clause
learning [30] may improve SAT-level performance. SMT is another interesting
direction, particularly for the theory of equality and uninterpreted functions.
Application to other logics is a related topic we would like to investigate further:
some seem quite achievable, such as some kind of support for arithmetic theories,
but we acknowledge that intuitionistic logic may present a challenge.

9.1 A Note From the Future

Since submission, we have been busy preparing SATCoP for competition at
CASC-28. Some ideas were found to further improve performance from that
reported here. We report these modifications here both for interest and to doc-
ument them in context for the competition.

– Our custom SAT routine is fast on the type of incremental SAT problems
generated by SATCoP, but is not a good general SAT routine. We implement
a new routine which first tries a few rounds of stochastic local search, then
falls back to PicoSAT if we fail to find a satisfying assignment. This makes
the common case very fast, allows solving the harder SAT problems quickly,
and is much simpler than the approach described above.

– This improved routine allows us to continuously solve the SAT problem as
clauses are added, rather than at each iterative deepening step.

– We restrict application of “model-based lemmata” to ground literals above.
We can relax this restriction, allowing a sort of “literal selection” technique
in which the first goal literal assigned true from a clause is attempted.

– Multiple CPU cores can be usefully occupied by launching multiple proof
search attempts with different pseudo-random seeds.
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