
Lemmas: Generation, Selection, Application⋆

Michael Rawson1 , Christoph Wernhard2 , Zsolt Zombori3 , and
Wolfgang Bibel4

1 TU Wien, Austria michael@rawsons.uk
2 University of Potsdam, Germany info@christophwernhard.com

3 Alfréd Rényi Institute of Mathematics, Hungary zombori@renyi.hu
4 Technical University Darmstadt, Germany bibel@gmx.net

Abstract. Noting that lemmas are a key feature of mathematics, we
engage in an investigation of the role of lemmas in automated theorem
proving. The paper describes experiments with a combined system in-
volving learning technology that generates useful lemmas for automated
theorem provers, demonstrating improvement for several representative
systems and solving a hard problem not solved by any system for twenty
years. By focusing on condensed detachment problems we simplify the
setting considerably, allowing us to get at the essence of lemmas and
their role in proof search.

1 Introduction

Mathematics is built in a carefully structured way, with many disciplines and
subdisciplines. These are characterized by concepts, definitions, axioms, theo-
rems, lemmas, and so forth. There is no doubt that this inherent structure of
mathematics is part of the discipline’s long-lasting success.

Research into Automated Theorem Proving (ATP) to date has taken little
notice of the information provided by this structure. Even state-of-the-art ATP
systems ingest a conjecture together with pertinent definitions and axioms in a
way completely agnostic to their place in the mathematical structure. A compar-
atively small but nevertheless important part of the structure of mathematics is
the identification and application of lemmas. It is this aspect which is the focus
of the work presented here.

The purpose of lemmas in mathematics is at least threefold. First, and per-
haps most importantly, lemmas support the search for proofs of assertions. If
some lemma applies to a given problem, a proof may be found more easily. Sec-
ond, it is often the case that a lemma may be applied more than once. If this
happens, its use will shorten the length of the overall proof since the proof of
the lemma need only be carried out once, not repeatedly for every application.
⋆ Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-

dation) – Project-ID 457292495, by the North-German Supercomputing Alliance
(HLRN), by the ERC grant CoG ARTIST 101002685, by the Hungarian National
Excellence Grant 2018-1.2.1-NKP-00008 and the Hungarian Artificial Intelligence
National Laboratory Program (RRF-2.3.1-21-2022-00004).

https://orcid.org/0000-0001-7834-1567
https://orcid.org/0000-0002-0438-8829
https://orcid.org/0000-0001-8622-5304
https://orcid.org/0000-0003-3892-0171


2 M. Rawson et al.

Third, the structuring effect of proofs by the use of lemmas is an important fea-
ture for human comprehension of proofs. In our work we are motivated primarily
by the first two of these three aspects.

These considerations give rise to the crucial question: how can we find useful
lemmas for proving a given problem? Here we mean useful in the sense of the two
aforementioned aspects: lemmas should be applicable to the problem at hand,
preferably many times. In full generality this is a difficult question indeed, which
will require much further research. In this first step we restrict the question
to a narrow range of problems, known in literature as condensed detachment
(CD) problems [41]. Proofs of CD problems can be represented in a simple
and accessible form as proof structure terms, enabling structure enumeration to
enhance proof search and lemma maintenance, as well as feature extraction for
learning. Our investigation thus focuses on the question of how ATP performance
may be improved for CD problems by the generation and selection of useful
lemmas before search begins.

CD problems are of the form “axiom(s) and Det imply a goal” where Det rep-
resents the well-known modus ponens rule, or condensed detachment. They have
a single unary predicate. A typical application is the investigation of an axiom-
atization of some propositional logic, whose connectives are then represented by
function symbols. In order to support this study experimentally, we have built
a combined system for dealing with these problems. It features SGCD [75] as
prover and lemma generator along with a learning module based on either an
easily-interpreted linear model over hand-engineered features, or a graph neural
network supporting end-to-end learning directly from lemmas.

Our work results in a number of inter-related particular contributions:

1. Incorporation of proof structure terms into ATP with Machine Learning
(ML). Consideration of features of the proof structure terms, explicitly in
linear-model ML or implicitly in a neural ML model. A novel ATP/ML
dataflow that is centered around proof structure terms.

2. Experimentally validated general insights into the use of learned lemmas for
provers of different paradigms, with different ways to incorporate lemmas,
and based on two alternate ML models. At the same time pushing forward
the state of the art on proving CD problems. Insights include: SGCD is
competitive with leading first-order provers; Learned lemmas significantly
extend the set of problems provable by the leading first-order prover Vampire;
Provers without internal lemma maintenance, such as Connection Method
(CM) [6,7,8] systems, are drastically improved; Vampire and SGCD are able
to handle a few hundreds of supplied lemmas; Learning based on manual
features and on automatic feature extraction perform similarly.

3. An automatic proof of the Meredith single axiom theorem LCL073-1, which
has persisted in the TPTP rated 1.00 since 1997. The first and only system
to succeed was OTTER [39], after intensive massaging by Wos [85]. It was
proven by SGCD in a novel systematic way.

4. An implemented framework with the new techniques for generation, selection
and application of lemmas.



Lemmas: Generation, Selection, Application 3

Structure of the Paper. Section 2 presents condensed detachment and its
embedding into the CM by way of so-called D-terms, as well as background
material on lemmas and machine learning in ATP. Section 3 introduces a method
for generating and selecting useful lemmas and presents experimental results with
it, leading up to the proof of LCL073-1 in Sect. 4. We conclude with a summary
and outlook for further work in this area in Sect. 5. Supplementary material is
provided in the appendix of the submission and will be made publicly available
in a preprint version. All experiments are fully reproducible and the artefacts
are available at https://github.com/zsoltzombori/lemma, commit df2faaa. We
use CD Tools [75] and PIE [72,73], implemented in SWI-Prolog [78], for reasoning
tasks and PyTorch [48] for learning.

2 Background and Related Work
In a very general sense, lemmas in ATP factorize duplication. This may be be-
tween different proofs that make use of the same lemma, or within a single proof
where a lemma is used multiple times. It may not even be a particular formula
that is shared, but a pattern, such as a resonator [82]. In the presence of machine
learning, we may think of even more abstract entities that are factorized: the
principles by which proofs are written, repeated in different proofs or contexts.

Depending on the proving method, lemmas in ATP play different roles.
Provers based on saturation, typically resolution/superposition (RS) systems [3],
inherently operate by generating lemmas: a resolvent is itself a lemma derived
from its parents. Nevertheless, one may ask for more meaningful lemmas than the
clauses of the proof. This is addressed with cut introduction [79,20,13], which
studies methods to obtain complex lemmas from resolution proofs. Such lem-
mas provide insight about the high-level structure of proofs, extract interesting
concepts and support research into the correspondence between natural mathe-
matical notions and possible proof compressions. Other approaches to interesting
theorems or lemmas are described for example in [65,53].

Another question concerning lemmas and ATP systems is whether perfor-
mance can be improved by supplementing the input with lemmas. This is par-
ticularly applicable if lemmas are obtained with methods that are different from
those of the prover. Otherwise, it may have obtained these by itself.5 As we will
see, leading ATP systems such as Vampire and E [59] can indeed be improved
in this way. Different methods does not necessarily mean different systems: it is
possible to use different configurations of the same system for lemma generation
and proving, as well as for intermediate operations. This was the workflow used
by Larry Wos to prove the challenge problem LCL073-1 with OTTER [85]. Our
SGCD system also supports this, which played a major role in its ability to prove
the aforementioned challenge problem.

Lemmas play a quite different role for a family of provers which we call
CM-CT for Connection Method/Clausal Tableaux, exemplified by PTTP [61],
SETHEO [33], and leanCoP [47,46]. Underlying conceptual models are model
elimination [35], clausal tableaux [31] and the CM. They enumerate proof struc-

5 We note here that in some cases systems cannot generate certain lemmas because
of e.g. ordering restrictions.

https://github.com/zsoltzombori/lemma


4 M. Rawson et al.

tures while propagating variable bindings initialized by the goal through unifi-
cation, and hence proceed in an inherently goal-driven way. While they are good
at problems that benefit from goal direction, in general they are much weaker
than RS provers and have not been among the top provers at CASC for about
two decades. This is attributed to the fact that they do not re-use the proof of
one subgoal as the solution of another: they do not use lemmas internally.

The lack of lemmas was identified early as a weakness of CM-CT [14], so
there have been various proposed remedies [14,2,62,60,32,16,46,19]. Despite some
insight and success, this did not yet elevate CM-CT to the level of the best
RS systems. Nevertheless, the expectation remains that CM-CT provers would
benefit from supplying lemmas as additional input. Hence, we included two CM-
CT systems in our experiments, leanCoP and CMProver [11,72,73] and show that
the expectation is greatly confirmed. Two other systems considered here, SGCD
and CCS [74], can be viewed as CM-CT systems extended to support specific
forms of lemma generation and application.

Lemmas can be maintained within the prover as an inherent part of the
method, as in saturation. They may also be created and applied by different
systems, or different instances of the same system [12,55]. Larry Wos calls this
lemma adjunction [84]. Lemmas created by one system are passed to a second
system in two principal ways. First, they can be passed as additional axioms, in
the hope that the second system finds a shorter proof in the wider but shallower
search space. Second, external lemmas can be used to replace search. The second
system then starts with the given lemmas as if they were the cached result of its
previous computation. Moreover, the provided lemmas can be restricted in ad-
vance by heuristic methods, such as by a machine-learned model. SGCD supports
this replacing lemma incorporation. The basic distinction between augmenting
and replacing search with lemmas was already observed by Owen L. Astrachan
and Mark E. Stickel [2] in the context of improving CM-CT provers.

2.1 Machine Learning for ATP

The past decade has seen numerous attempts to leverage machine learning in
the automated theorem proving effort. Early systems mostly focused on premise
selection, e.g. [68,1,71], aiming to reduce the number of axioms supplied as input
to the prover. Other works provide internal guidance directly at the level of
inferences during search, e.g. [34,25,17,27,86,54]. The emergence of generative
language models has also led to some initial attempts at directly generating
next proof steps, e.g. [49,67,50], moving the emphasis away from search.

In contrast to these lines of work, our focus is on learning the utility of
lemmas. Close to our aims is [26,28], trying to identify globally useful lemmas in
a collection of millions of proofs in HOL Light. Besides differences in the formal
system, what distinguishes our work is that we learn a much more focused model:
we put great emphasis on evaluating lemmas in the context of a particular goal
and axiom set; in fact, our entire system was designed around the question
whether a given lemma is moving the goal closer to the axioms. We argue that
the D-term representation of all involved components (goal, lemma, axioms,
proof) makes our framework particularly suitable for the lemma selection task.



Lemmas: Generation, Selection, Application 5

We employ an iterative improvement approach first used in MaLARea [68]:
in each iteration, we run proof search guided by a learned model, extract training
data from proving attempts, and fit a new model to the new data. These steps
can be repeated profitably until performance saturates.

2.2 Condensed Detachment: Proofs as Terms

Condensed detachment (CD) was developed in the mid-1950s by Carew A.
Meredith as an evolution of substitution and detachment [51,30,52,43]. Reasoning
steps are by detachment, or modus ponens, under implicit substitution by most
general unifiers. Its primary application is the investigation of axiomatizations
of propositional logics at a first-order meta-level. CD also provides a technical
approach to the Curry-Howard correspondence, “formulas as types” [22,21] and
is considered in witness theory [57]. Many early successes in ATP were on CD
problems [40,66], but success was also found in the reverse direction. Refinements
of the OTTER prover in the 1990s, some of which have found their ways into
modern RS provers, were originally conceived and explored in the setting of CD
[80,81,40,82,83,69,15,85].

From a first-order ATP perspective, a CD problem consists of axioms, i.e.
positive unit clauses; a goal theorem, i.e. a single negative ground unit clause
representing a universally-quantified atomic goal theorem after Skolemization;
and the following ternary Horn clause that models detachment.

Det def= P(i(x, y)) ∧ P(x) → P(y).

The premises of Det are called the major and minor premise, respectively. All
atoms in the problem have the same predicate P, which is unary and stands for
something like provable. The formulas of the investigated propositional logic are
expressed as terms, where the binary function symbol i stands for implies.

CD may be seen as an inference rule. From an ATP perspective, a CD in-
ference step can be described as a hyperresolution from Det and two positive
unit clauses to a third positive unit clause. A CD proof is a proof of a CD
problem constructed with the CD inference rule. CD proofs can be contrasted
with other types of proof, such as a proof with binary resolution steps yielding
non-unit clauses. Prover9 [38] chooses positive hyperresolution by default as its
only inference rule for CD problems and thus produces CD proofs for these.

It is, however, another aspect of CD that makes it of particular interest for
developing new ATP methods, which only recently came to our attention in
the ATP context [76]: the structure of CD proofs can be represented in a very
simple and convenient way as full binary trees, or as terms. In ATP we find this
aspect in the CM, where the proof structure as a whole is in focus, in contrast
to extending a set of formulas by deduction [9]. This view of CD is made precise
and elaborated upon in [77], on which the subsequent informal presentation is
based. We call the structure representations of CD proofs D-terms. A D-term is a
term recursively built from numeral constants and the binary function symbol D
whose arguments are D-terms. In other words, it is a full binary tree where the
leaf nodes are labeled with constants. Four examples of D-terms are

1, 2, D(1, 1), D(D(2, 1),D(1,D(2, 1))).



6 M. Rawson et al.

A D-term represents the structure of a proof. A proof in full is represented by
a D-term together with a mapping of constant D-terms to axioms. Conversion
between CD proofs and D-terms is straightforward: the use of an axiom corre-
sponds to a constant D-term, while an inference step corresponds to a D-term
D(d1, d2) where d1 is the D-term that proves the major premise and d2 the minor.

Through first-order unification, constrained by axioms for the leaf nodes and
the requirements of Det for inner nodes, it is possible to obtain a most general
formula proven by a D-term [77]. We call it the most general theorem (MGT) of
the D-term with respect to the axioms, unique up to renaming of variables. For
a given axiom map, not all D-terms necessarily have an MGT: if unification fails,
we say the D-term has no MGT. It is also possible that different D-terms have
the same MGT, or that the MGT of one is subsumed by the MGT of another.
A D-term is a proof of the problem if its MGT subsumes the goal theorem.

As an example, let the constant D-term 1 be mapped to P(i(x, i(x, x))),
known as Mingle [66]. Then, the MGT of the D-term 1 is just this axiom. The
MGT of the D-term D(1, 1) is P(i(x, i(x, x)), i(x, i(x, x))), that is, after renam-
ing of variables, P(y)σ where σ is the most general unifier of the set of pairs
{{P(i(x, y)), P(i(x′, i(x′, x′)))}, {P(x), P(i(x′′, i(x′′, x′′)))}}.

D-terms, as full binary trees, facilitate characterizing and investigating struc-
tural properties of proofs. While, for a variety of reasons, it is far from obvious
how to measure the size of proofs obtained from ATP systems in general, for
D-terms there are at least three straightforward size measures:

– The tree size of a D-term is the number of its inner nodes.
– The height of a D-term is the length of the longest root-leaf path.
– The compacted size of a D-term is the number of distinct compound sub-

terms, or, in other words, the number of inner nodes of its minimal DAG.

Alternative names in the literature are length for compacted size, level for height
and CDcount [69] for tree size. The D-term D(D(1,D(1, 1)),D(D(1, 1), 1)), for
example, has tree size 5, compacted size 4 and height 3. Factor equations provide
a compact way of writing D-terms: distinct subproofs with multiple incoming
edges in the DAG receive numeric labels, by which they are referenced. The
D-term D(D(1, 1),D(D(1,D(1, 1)),D(1,D(1, 1)))), for example, can be written as
2 = D(1, 1), 3 = D(1, 2), 4 = D(2,D(3, 3)).

CD problems have core characteristics of first-order ATP problems: first-order
variables, at least one binary function symbol and cyclic predicate dependency.
But they are restricted: positive unit clauses, one negative ground clause, and
one ternary Horn clause. Equality is not explicitly considered. The generalization
of CD to arbitrary Horn problems is, however, not difficult [74].

2.3 Condensed Detachment for ATP and Lemmas

From an ATP point of view, D-terms provide access to proofs as a whole. This
exposes properties of proofs that are not merely local to an inference step, but
spread across the whole proof. It suggests a shift in the role of the calculus
from providing a recipe for building the structure towards an inductive structure
specification. Moreover, D-terms as objects provide insight into all proofs: for



Lemmas: Generation, Selection, Application 7

example, growth rates of the number of binary trees for tree size, height and
compacted size are well-known with entries in The On-Line Encyclopedia of
Integer Sequences [45] and provide upper bounds for the number of proofs [77]. A
practical consequence for ATP is the justification of proof structure enumeration
techniques where each structure appears at most once.

CD proofs suggest and allow for a specific form of lemmas, which we call
unit or subtree lemmas, reflecting two views on them. As formulas, they are
positive unit clauses, which can be re-used in different CD inference steps. In
the structural view, they are subterms, or subtrees, of the overall D-term. If
they occur multiply there, they are factored in the minimal DAG of the overall
D-term. The views are linked in that the formula of a lemma is the MGT of
its D-term. The compacted size measure specified above takes into account the
compression achievable by unit/subtree lemmas. From the perspective of proof
structure compression methods, unit/subtree lemmas have the property that
the compression target is unique, because each tree is represented by a unique
minimal DAG. CM-CT provers do not support such lemmas, which is the main
reason for their notorious weakness on CD problems.

2.4 SGCD — Structure Generating Theorem Proving

SGCD (Structure Generating Theorem Proving for Condensed Detachment) [75]
is the central system used in our experiments as prover as well as lemma genera-
tor. It realizes an approach to first-order theorem proving combining techniques
known from the CM and RS that was not fully recognized before. It generalizes
(for CD problems) bottom-up preprocessing for and with CM-CT provers [60]
and hypertableaux [4]. SGCD works by enumeration of proof structures together
with unification of associated formulas, which is also the core method of the CM-
CT provers. Structures for which unification fails are excluded. Each structure
appears at most once in the enumeration.

Let the proof structures be D-terms. Partition the set of all D-terms according
to some level such that those in a lower level are strict subterms of those in a
higher level. Tree size or height are examples of such a level. Let

enum_dterm_mgt_pairs(+Level, ?DTerm, ?Formula)

be a Prolog6 predicate enumerating D-terms and corresponding MGTs at a cer-
tain level, with respect to some quietly assumed axioms. We say that the pred-
icate generates these pairs in an axiom-driven way. If the predicate is invoked
with the formula argument instantiated by a ground formula, it enumerates D-
terms that prove the formula at the specified level. The predicate is then used
goal-driven, like a CM-CT prover. Invoking it for increasing level values realizes
iterative deepening. There are further instantiation possibilities: if only the D-
term is instantiated and the level is that of the D-term, its MGT is computed.
If both D-term and formula are instantiated, the predicate acts as verifier.

The implementation includes several generators, concrete variants of the
enum_dterm_mgt_pairs predicate for specific level characterizations. SGCD main-
6 Prolog serves here as a suitable specification language.



8 M. Rawson et al.

C := ∅;
for l := 0 to maxLevel do

for m := l to l + preAddMaxLevel do
enum_dterm_mgt_pairs(m, d, g);
throw proof_found(d)

N := {⟨l, d, f⟩ | enum_dterm_mgt_pairs(l, d, f)};
if N = ∅ then throw exhausted;
C := merge_news_into_cache(N,C)

Fig. 1. The nested loops of the SGCD theorem proving method.

tains a cache of ⟨level ,D-term, formula⟩ triples used to obtain solutions for sub-
problems in levels below the calling level. This cache is highly configurable. In
particular, the number of entries can be limited, where only the best triples ac-
cording to specified criteria are kept. Typical criteria are height or size of the
formula, a heuristic shared with RS provers. Subsumed entries can be deleted,
another feature in common with RS. Novel criteria are also supported, some of
which relate the formula to the goal. Most criteria are based on the formula com-
ponent of the triples, the MGT. Due to rigid variables [23], MGTs are not usually
available in CM-CT provers [77] and cannot be used as a basis for heuristics.

When lemmas are provided to SGCD, they are used to initialize the cache,
replacing search at levels lower than the calling level.7 SGCD further maintains a
set of abandoned ⟨level ,D-term, formula⟩ triples, those that are generated but do
not qualify for entering the cache or were removed from the cache. These are kept
as a source for heuristic evaluation of other triples and for lemma generation.

For theorem proving, SGCD proceeds as shown in Fig. 1. Input param-
eter g is the goal formula, while parameters maxLevel and preAddMaxLevel
are configurable. enum_dterm_mgt_pairs represents a particular generator that
is also configurable. It enumerates argument bindings nondeterministically: if
it succeeds in the inner loop, an exception returns the D-term d. C is the
cache. The procedure merge_news_into_cache(N,C) merges newly generated
⟨level ,D-term, formula⟩ triples N into the cache C. If maxLevel is configured
as 0, the method proceeds in purely goal-driven mode with the inner loop per-
forming iterative deepening on the level m. Similarity to CM-CT provers can be
shown empirically by comparing the sets of solved TPTP problems [75]. Gener-
ally successful configurations of preAddMaxLevel typically have values 0–3.

3 Improving a Prover via Learned Lemma Selection

We employ machine learning to identify lemmas that can enhance proof search.
Unlike the standard supervised scenario in which we learn from some train-
ing problems and evaluate performance on separate test problems, we take a
reinforcement learning approach of self-improvement that has already been suc-
cessfully applied in several theorem proving projects since [68]. In this approach,
we perform proof search with a base prover on our entire problem set and learn
7 Replacement can be subject to heuristic restrictions.



Lemmas: Generation, Selection, Application 9

from the proof attempts.8 The learning-assisted prover is evaluated again in the
problem set to see if it can find more or different problems. If there is improve-
ment, the process can be repeated until performance saturates. In a bit more
detail, our system has the following components.

1. Base Prover: Performs proof search and its main role is to provide training
data to the utility model.

2. Utility Model: The model takes ⟨conjecture, lemma, axioms⟩ triples and
outputs an utility score, i.e., some measure of how useful the lemma is for
proving the conjecture from the axioms. The utility model is trained from
the D-terms emitted by the base prover.

3. Lemma Generator: Produces a large set of candidate lemmas for each
problem separately. All candidates are derivable from the axioms.

4. Evaluated Prover: For each problem, we evaluate the candidate sets with
the utility model and select the best ones. These lemmas are provided to
the evaluated prover which performs proof search on the problem set. The
evaluated prover can be identical to or different from the base prover.

Base Prover. Any prover that emits proofs as D-terms is suitable as a base
prover. Given a D-term proof tree P of some formula C from axiom set As, any
connected subgraph S of P can be considered as the proof of a lemma L. If S
is a full tree, it proves a unit lemma, which is the formula associated with its
root. Otherwise, it proves a Horn clause, whose head is the root formula of S
and whose body corresponds to the open leaves of S. We currently focus on unit
lemmas and leave more general subgraphs for future work. To approximate the
utility of lemma L for proving C from As, there are several easy-to-compute
logical candidates, such as the reduction in tree size, tree height or compressed
size. A more refined measure is obtained if we reprove C with the lemma L
added to the axioms As and observe how the number of inference steps changes.9
This is slower to compute, but takes into account the particularities of the base
prover, hence provides more focused guidance. In our experiments, we find that
the best performance is obtained by reproving and then computing utility U
as the inference step reduction normalised into [−1, 1], where −1 means that
the problem could not be solved within the original inference limit and 1 is
assigned to the lemma that yields the greatest speedup. We end up with tuples
⟨C,As, L, U⟩ to learn from.
Utility Model Training. We experiment with gradient-descent optimisation
for two classes of functions: linear models and graph neural networks (GNNs).
Our linear model is based on 51 manually-identified features, some of them novel,
described in App. A. For each feature fi there is an associated weight parameter
wi to produce the final predicted utility

U(f ;w) =
∑
i

fiwi

8 We currently only learn from successful proof attempts and sketch an extension to
learning from failure.

9 The number of inferences is a measure provided by the Prolog engine and is not
identical to the number of steps in the FOL calculus.



10 M. Rawson et al.

The second, more involved model is a GNN. Describing this model is beyond
the scope of this paper: see e.g. [58] for a gentle introduction. What is crucial
for our purposes is that no manual feature extraction is involved: a specialized
neural network processes the D-terms of involved formulas directly and learns
to extract useful features during optimisation. As input, the model is given a
graph, losslessly encoding D-terms of the lemma to be evaluated, the conjecture
and the axioms. The precise network architecture is provided in App. B.
Candidate Lemma Generation. Candidate lemmas are generated separately
for each problem via the structure enumeration mechanism of SGCD, as ex-
plained in Fig. 1. The goal g is provided and preAddMaxLevel is set to 0, making
SGCD proceed axiom-driven, generating lemmas level by level. However, it does
intersperse the goal-driven inner loop, which is only trying to prove the goal on
the level directly above the last cached level. SGCD may terminate with a proof,
in which case further lemma generation is pointless. Otherwise it terminates af-
ter maxLevel is reached, generation of new levels is exhausted, or a time limit
is reached. We then use the cache C and the abandoned triples as the gener-
ated output lemmas. Furthermore, there are many ways to configure SGCD. We
obtained the best results generating by tree size and by PSP-level (explained be-
low), combined with known good heuristic restrictions. In particular we restrict
the size of the lemma formulas to the maximum of the size of the axioms and
the goal, multiplied by some factor (usually 2–5). We also restrict the number
of elements in the cache, typically to 1,000. The lemmas are sorted by formula
size measures, smaller preferred, to determine which are retained in the cache.

Proof structure generation by PSP-level is a novel technique introduced in
[75,77], based on an observation by Łukasiewicz and Meredith. In a detachment
step, often the D-term that proves one premise is a subterm of the D-term that
proves the other. We turn this relationship into a proof structure enumeration
method: structures in level n + 1 are D-terms where one argument D-term is
at level n and the other argument is a subterm of that D-term. The method is
incomplete, but combines features of DAG enumeration while being compatible
with a simple global lemma maintenance as realized with SGCD’s cache [77].
Evaluated Prover. For each problem, we evaluate the candidate set with the
utility model and select k lemmas with the highest predicted utility, where k is
a hyperparameter. The evaluated prover then tries to solve the problems with
the help of the selected lemmas. The lemmas can either be treated as additional
axioms – applicable to any prover – or have a specialised treatment if the prover
provides for it: in particular, SGCD and CCS-Vanilla use the lemmas to replace
inner lemma enumeration.10 The evaluated prover can be any prover, since there
is no specialised requirement to handle lemmas as new axioms. If, however, it is
the base prover – or any other system that emits proofs as D-terms, then the
learning procedure can be iterated as long as there are new problems solved.
10 Before the obtained input lemmas are passed to a prover we supplement them with

the lemmas for all their subproofs, i.e. we close the set of D-terms under the subterm
relationship. This proved beneficial in experiments (see, e.g., App. D). An alternative
would be to perform this closure on all generated lemmas before selection.



Lemmas: Generation, Selection, Application 11

Table 1. Features of the considered provers: whether their proofs are available as D-
terms (possibly after some conversion), whether they were used with replacing lemma
incorporation (Sect. 2), whether they operate goal-driven, and the underlying method.

SGCD Prover9 CMProver leanCoP CCS-Vanilla Vampire E

D-terms • • • − • − −
Replacing lemmas • − − − • − −
Goal-driven •/− − • • • − −
CM-CT − − • • − − −
RS − • − − − • •

3.1 Learning-Based Experiments

We experiment with a total of 312 CD problems, including all 196 pure CD
problems from TPTP 8.1.2 [64], enriched with single-axiom versions of all the
problems to which a technique by Tarski [37], as specified by Rezuş [56], was
applicable. We test several representative ATP systems, including state-of-the-
art systems for both general first-order reasoning and for CD problems.

Table 1 gives an overview of the considered provers. CCS-Vanilla is CCS [74] in
a restricted configuration to find only those CD proofs with minimal compacted
size, identifying problems that can clearly be solved with exhaustive search. It
operates goal-driven, like the CM-CT provers, but by enumerating DAGs instead
of trees through a local lemma maintenance mechanism. Vampire and E represent
the state of the art of first-order ATP. Provers that produce D-terms as proofs
(SGCD, Prover9, CMProver, CCS) can serve as base provers. We always rely on
SGCD for lemma candidate generation. All provers are recent public versions:
Vampire 4.5.1, E 2.6, leanCoP 2.1. We provide results in terms of time limits,
although for the Prolog provers SGCD, CMProver and CCS-Vanilla we used a
roughly-equivalent inference limit to avoid fluctuations due to server workload.
Improving the Base Prover. In our first experiment, we evaluate base
provers after learning from their own proof attempts. The provers are given
k = 200 best lemmas according to the linear utility model. Table 211 shows
problems solved by four base provers without lemmas (Base case) and with two
iterations of learning. The Total row gives the number of theorems proved by any
of the three iterations shown. The stronger the base model, the harder it is to
improve. CMProver and CCS-Vanilla are purely goal-driven and benefit greatly,
reaching over 37% improvement for larger time limits. SGCD and Prover9 im-
prove over 5% for shorter time limits, but this effect gradually vanishes as the
time limit is increased.

Table 2. Number of problems solved over 2 iterations of training a linear model.

SGCD Prover9 CMProver CCS-Vanilla
Time 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m

Base 266 275 285 285 240 252 259 262 82 85 94 103 81 88 99 105
Iter 1 280 282 284 281 250 254 262 257 83 93 105 121 96 101 117 130
Iter 2 281 283 281 283 247 247 267 265 79 98 95 126 96 97 120 128

Total 282 284 286 286 253 258 269 267 91 105 112 141 106 105 133 145

11 Further visualisations of our experiments are provided in App.C.



12 M. Rawson et al.

An analysis, provided in App. D, reveals that in the proofs not found during
lemma generation and found by SGCD after the provision of lemmas, 63− 96%
of the distinct subterms originate from the lemmas, i.e., a substantial portion of
the proofs are built up from the provided lemmas.
Learned Lemmas to Enhance other Provers. Next, we fix SGCD as base
prover and evaluate other provers, namely Vampire, E, Prover9 and leanCoP.
Again, the provers are given k = 200 best lemmas according to the linear utility
model. Table 3 shows the greatest boost is for the purely goal-driven leanCoP,
where there is over 40% improvement for all time limits. Second is Vampire with
8− 15% improvement, followed by Prover9 and E with around 3% improvement.
Interestingly, E does not solve more problems with the lemmas, but it solves
different ones, hence the improvement. These results suggest a great deal of
transferability of the benefits of the lemma selector.

Table 3. Number of problems solved by Vampire (casc), E (autoschedule), Prover9 and
leanCoP without and with additional lemmas using various time limits.

Vampire E Prover9 leanCoP
Time 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m 50s 100s 500s 30m

Base 221 224 252 263 253 264 275 281 236 244 257 260 70 71 77 77
Lemmas 249 257 274 283 256 266 275 275 246 250 261 269 100 103 111 113

Total 249 257 276 284 269 276 287 286 248 252 264 269 100 103 111 113

Changing the Number of Lemmas Added. Adding lemmas has potential
to shorten proofs, but it also widens the search space, so it is not obvious how
many lemmas are beneficial. In the next experiment, we again fix SGCD as base
prover and evaluate SGCD and Vampire with different number of lemmas selected.
Table 4 shows that as little as 25 added lemmas yield substantial improvement,
7% for Vampire and 4% for SGCD, and performance does not drop as we add
more lemmas: even at 500 we see no negative effect of the expanded search space.

Table 4. Number of problems solved by Vampire (casc) and SGCD as we alter the
number k of supplemented lemmas. We use a time limit of 100s.

Vampire SGCD
Lemma count 10 25 50 100 200 500 10 25 50 100 200 500

Base 227 227 227 227 227 227 275 275 275 275 275 275
Lemmas 226 242 246 258 257 258 278 285 284 281 283 284

Total 231 243 247 258 257 258 282 285 284 283 284 285

Linear vs GNN Model. The preceding experiments suggest that even a sim-
ple linear model can provide useful guidance when features are carefully selected.
Table 5 shows that the GNN — which processes the formulas directly and has
no access to expert designed features — also successfully learns to identify useful
lemmas for SGCD and even slightly surpasses the linear model. LCL125-1 can
only be solved by the GNN-assisted prover, even at extremely large time limits.



Lemmas: Generation, Selection, Application 13

Table 5. Number of problems solved by SGCD over 2 iterations of training both a
linear and a graph neural network model, for time limits 50 s, 100 s, 500 s and 30 min.

Linear GNN
Time 50s 100s 500s 30m 50s 100s 500s 30m

Base 266 275 285 285 266 275 285 285
Iter 1 280 282 284 281 272 282 283 284
Iter 2 281 283 281 283 279 282 282 284

Total 282 284 286 286 279 285 287 287

3.2 Discussion of Learning-Based Experiments

When enhanced by learning-based lemma selection, SGCD solves 287 of the 312
problems. These include 28 problems not solved by the leading first-order prover
Vampire [29], which solves 263 problems in its CASC [63] portfolio mode. Supple-
mented with our lemmas, Vampire is boosted to 284 solved problems. In combina-
tion, boosted SGCD and Vampire give 293 solved problems. Taking into account
the solutions obtained by further provers with our lemmas, we obtain a total
of 297. For detailed results see App. E and http://cs.christophwernhard.com/
cdtools/exp-lemmas/lemmas.html.

A notable observation is that all systems – with the exception of E – improve
when provided with selected lemmas. We argue that our framework addresses
fundamental weaknesses of both purely goal-driven systems such as CMProver,
leanCoP and CCS-Vanilla, as well as those of saturation style systems such as
Vampire and E. For the former, it is their inability to generate lemmas, which
results in unduly long proofs. For the latter, it is their unrestricted expansion
of the branching of the search space. We find that goal-driven systems demon-
strate huge improvement when lemmas are added: usually 20− 40% depending
on the configuration. The improvement is much more modest for saturation style
systems, partly because their baselines are already stronger and partly because
learned lemma selection still has a large room for improvement. This is the fo-
cus of our immediate future work. SGCD already provides a balance between
goal-driven search and axiom-driven lemma generation and we only see significnt
improvement from lemmas when the time limit on proof search is smaller. Our
manual feature-based linear model allows for exploiting expert knowledge. How-
ever, we see more potential in automated feature extraction via GNNs. The fact
that the two models perform similarly suggests that we are not providing enough
training data for the GNN to manifest its full capabilities.

4 Proving LCL073-1

LCL073-1 was proven by Meredith in the early 1950s with substitution and
detachment [42] but it remains outstandingly hard for ATP, where it came to
attention in 1992 [40]; TPTP reports rating 1.0 and status Unknown since 1997.
Only Wos proved it in the year 2000 with several invocations of OTTER [85],

http://cs.christophwernhard.com/cdtools/exp-lemmas/lemmas.html
http://cs.christophwernhard.com/cdtools/exp-lemmas/lemmas.html


14 M. Rawson et al.

2 = D(1,D(1,D(1, 1))), 3 = D(2, 2), 4 = D(1, 3), 5 = D(1, 4), 6 = D(5, 1), 7 = D(5, 6),
8 = D(D(D(1,D(1, 7)), 6), 1), 9 = D(8, 6), 10 = D(8,D(1, 9)), 11 = D(D(1,D(1,D(4, 10))), 1),
12 = D(1,D(6,D(1,D(D(1,D(9,D(9,D(D(11, 3), 4)))), 1)))), 13 = D(D(D(12,D(5,D(8, 12))), 1), 7),
14 = D(1,D(13,D(1,D(13, 5)))), 15 = D(D(1,D(13,D(D(D(D(13, 6), 9), 11), 10))),D(14,D(14, 1)))

Fig. 2. The D-term of our proof of LCL073-1 represented by factor equations.

transferring output and insight between runs. The problem has a single axiom,

P(i(i(i(i(i(x, y), i(n(z), n(u))), z), v), i(i(v, x), i(u, x)))),

and the goal P(i(i(a, b), i(i(b, c), i(a, c)))), known as Syll [66]. The wider context
is showing that a single axiom entails the elements of a known axiomatization
of a propositional logic. Experiments with SGCD in our workflow led to a proof
of LCL073-1 (Fig. 2, also App. F) surprisingly quickly. Its compacted size is 46,
between that of Meredith (40, reconstructed with CD in [85]) and that of Wos
(74). Our workflow is much simpler than Wos’, basically the same as our other
experiments but restricted to one phase of lemma generation and incorporation,
with only heuristic lemma selection, no learning. Nevertheless, success is fragile
with respect to configuration, where reasons for failure or success are not obvious.

Our configuration parameters are not problem specific, although we started
out with lemma generation by PSP-level because it led earlier to a short proof of
LCL038-1 [75,77]. We first call SGCD to generate lemmas by PSP-level enumera-
tion, configured with a cache size of 5,000, terminating after 60 s with exhaustion
of the search space.12 Lemma features are computed for the 98,198 generated
lemmas and written to disk, taking another 120 s. Lemmas are then ordered
lexicographically according to five features relating to sharing of symbols and
subterms with the goal, and to formula dimensions, taking a further 70 s. These
five features are lf_h_height, lf_h_excluded_goal_subterms, lf_h_tsize,
lf_h_distinct_vars, dcterm_hash, see App. A for their specification. We now
call SGCD again, configured such that it performs PSP-level enumeration for
axiom-driven phases, interleaved with level enumeration by height for goal-driven
phases with 0 as preAddMaxLevel . It incorporates the first 2,900 ordered lem-
mas13 as input by replacement (Sect. 2). The cache size limit is set to 1,500,
a value used in other generally successful configurations. Formulas occuring as
subformulas of an earlier-proven formula are excluded, a variation of the organic
property [37,77]. The proof is then found in 20 s, total time elapsed about 270 s.

The D-term dimensions ⟨compacted size, tree size, height⟩ are ⟨46, 3276, 40⟩,
compared to Meredith’s ⟨40, 6172, 30⟩14 and Wos’ ⟨74, 9207, 48⟩. The maximal
size (occurrences of non-constant function symbols) of a lemma formula (MGT
of a subproof) in the proof is 19, the maximal height (tree height, disregarding
the predicate symbol) 9, and the maximal number of variables 7. Of the 46
lemmas in the proof 12 are present in the 2,900 input lemmas. 35 of the 46
lemma formulas are weakly organic [77]. 4 of the 46 formulas involve double
12 Notebook hardware, Intel® Core™ i7-1260P processor, 32 GB RAM.
13 2,900 is one of the fragile parameters. Depending on features chosen for ordering

lemmas, there are ranges around 3,000 where the problem is solved.
14 The length reported in [85] is the compacted size if also the proofs of the two other

goals required to prove completeness of the single axiom are considered. The notion
of compacted size straightforwardly generalizes from trees to sets of trees [77].



Lemmas: Generation, Selection, Application 15

negation. N-simplification [77] applies to 65 occurrences but does not effect a size
reduction. The proof is S- and C-regular [77]. Certain configurations of SGCD
for the proving phase also yield further proofs. In experiments so far, these are
enumerated after the presented proof and have larger compacted size.

Proof structure enumeration by PSP-level [77] is the main key to finding
our proof of LCL073-1. It is used for lemma generation and for axiom-driven
proof search, whereas goal-driven phases use height instead. The structure of
the proof reflects this: all steps with the exception of the root can be considered
PSP steps, i.e. one premise is a subproof of the other. The particular challenge
of the problem lies in the fact that it was solved by a human (Meredith). Unlike
in recent ATP successes for Boolos’ curious inference [10,5], where the key is two
particular second-order lemmas, the key here is a proof-structural principle for
building-up proofs by lemmas. Intuitively it might express a form of economy,
building proofs from proofs at hand, that belonged to Meredith’s repertoire.

5 Conclusion
We presented encouraging results about the use of lemmas in proof search.
Provers are provided with lemmas generated via structure enumeration, a fea-
ture of the CM, and filtered with either learned guidance or manual heuristics.
As a first step with this new methodology, we focus on the class of CD problems
where we obtained strong results with our own system and substantial improve-
ment of general first-order provers based on different paradigms, including the
long-time competition leader Vampire. Moreover, our approach has led to the
— in a sense first — automatic proof for the well-known Meredith single axiom
problem with TPTP difficulty rating 1.0.

An important and novel aspect in our work was the explicit consideration of
proof structures, which for CD have a particularly simple form in D-terms. Proof
structures of the CM have a direct correspondence to these [77], such that the
CM may guide the way to generalizations for more expressive logics. Another
course of generalization is to move from unit lemmas, i.e. sharing of subtrees of
D-terms, to more powerful lemmas. Preliminary work shows a correspondence
between Horn clause lemmas, D-terms with variables, proofs in the connection
structure calculus [14], and combinatory compression [74].

The learning-based experiments show little difference in performance between
using a simple linear model and a more sophisticated graph neural network. We
believe this is due to the small problem corpus, which yields a limited training
signal. Hence, we plan to scale the system up to larger problem sets.

Our work also sheds new light on perspectives for the CM. It is well-known
that the lack of inherent lemma maintenance is a disadvantage of the CM com-
pared to resolution, which can be overcome with the connection structure cal-
culus [14], a generalization of the CM. Here we see in experiments a drastic
improvement of the CM-CT provers by supplementing their input with exter-
nally generated lemmas. SGCD, which grew out of the CM-CT approach and
integrates repeated lemma generation into the proving process, keeps up with
RS provers on CD problems, and can even be applied to improve these by sup-
plying its lemmas as additional input.



16 M. Rawson et al.

References

1. Alemi, A.A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: DeepMath —
Deep Sequence Models for Premise Selection. In: Lee, D., et al. (eds.) NIPS’16. pp.
2243–2251. Curran Associates Inc., USA (2016), http://dl.acm.org/citation.cfm?
id=3157096.3157347

2. Astrachan, O.L., Stickel, M.E.: Caching and lemmaizing in model elimination the-
orem provers. In: Kapur, D. (ed.) CADE-11. pp. 224–238. Springer, Berlin (1992).
https://doi.org/10.1007/3-540-55602-8_168

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handb. of Autom. Reasoning, vol. 1, chap. 2, pp. 19–99. Else-
vier (2001). https://doi.org/10.1016/B978-044450813-3/50004-7

4. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J.,
Pereira, L.M., Orlowska, E. (eds.) JELIA’96. LNCS (LNAI), vol. 1126, pp. 1–17.
Springer (1996). https://doi.org/10.1007/3-540-61630-6_1

5. Benzmüller, C., Fuenmayor, D., Steen, A., Sutcliffe, G.: Who finds the short proof?
Logic Journal of the IGPL (2023). https://doi.org/10.1093/jigpal/jzac082

6. Bibel, W.: Automated Theorem Proving. Vieweg, Braunschweig (1982). https://
doi.org/10.1007/978-3-322-90102-6, second edition 1987

7. Bibel, W.: Deduction: Automated Logic. Academic Press, London (1993)
8. Bibel, W., Otten, J.: From Schütte’s formal systems to modern automated deduc-

tion. In: Kahle, R., Rathjen, M. (eds.) The Legacy of Kurt Schütte, chap. 13, pp.
215–249. Springer (2020). https://doi.org/10.1007/978-3-030-49424-7_13

9. Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Artificial Intelli-
gence Today: Recent Trends and Developments, pp. 43–84. Springer (2001)

10. Boolos, G.: A curious inference. J. Philos. Logic 16, 1–12 (1987). https://doi.org/
10.1007/BF00250612

11. Dahn, I., Wernhard, C.: First order proof problems extracted from an article in
the Mizar mathematical library. In: Bonacina, M.P., Furbach, U. (eds.) FTP’97.
pp. 58–62. RISC-Linz Report Series No. 97–50, Joh. Kepler Univ., Linz (1997),
https://www.logic.at/ftp97/papers/dahn.pdf

12. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT — a distributed and learn-
ing equational prover. J. Autom. Reasoning 18(2), 189 (1997)

13. Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quanti-
fied lemmas. J. Autom. Reasoning 63(1), 95–126 (2019). https://doi.org/10.1007/
s10817-018-9462-8

14. Eder, E.: A comparison of the resolution calculus and the connection method,
and a new calculus generalizing both methods. In: Börger, E., Kleine Büning,
H., Richter, M.M. (eds.) CSL ’88. LNCS, vol. 385, pp. 80–98. Springer (1989).
https://doi.org/10.1007/BFb0026296

15. Fitelson, B., Wos, L.: Missing proofs found. J. Autom. Reasoning 27(2), 201–225
(2001). https://doi.org/10.1023/A:1010695827789

16. Fuchs, M.: Lemma generation for model elimination by combining top-down and
bottom-up inference. In: Dean, T. (ed.) IJCAI 1999. pp. 4–9. Morgan Kaufmann
(1999), http://ijcai.org/Proceedings/99-1/Papers/001.pdf

17. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove
with tactics. CoRR abs/1804.00596 (2018), http://arxiv.org/abs/1804.00596

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR 2016. pp. 770–778 (2016)

http://dl.acm.org/citation.cfm?id=3157096.3157347
http://dl.acm.org/citation.cfm?id=3157096.3157347
https://doi.org/10.1007/3-540-55602-8_168
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1007/3-540-61630-6_1
https://doi.org/10.1093/jigpal/jzac082
https://doi.org/10.1007/978-3-322-90102-6
https://doi.org/10.1007/978-3-322-90102-6
https://doi.org/10.1007/978-3-030-49424-7_13
https://doi.org/10.1007/BF00250612
https://doi.org/10.1007/BF00250612
https://www.logic.at/ftp97/papers/dahn.pdf
https://doi.org/10.1007/s10817-018-9462-8
https://doi.org/10.1007/s10817-018-9462-8
https://doi.org/10.1007/BFb0026296
https://doi.org/10.1023/A:1010695827789
http://ijcai.org/Proceedings/99-1/Papers/001.pdf
http://arxiv.org/abs/1804.00596


Lemmas: Generation, Selection, Application 17

19. Hester, J.: Novel Methods for First Order Automated Theorem Proving. Ph.D.
thesis, University of Florida (2021)

20. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In:
Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228–242.
Springer (2012). https://doi.org/10.1007/978-3-642-28717-6_19

21. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press (1997).
https://doi.org/10.1017/CBO9780511608865

22. Hindley, J.R., Meredith, D.: Principal type-schemes and condensed detachment.
Journal of Symbolic Logic 55(1), 90–105 (1990). https://doi.org/10.2307/2274956

23. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.)
Handb. of Autom. Reasoning, vol. 1, chap. 3, pp. 101–178. Elsevier (2001). https:
//doi.org/10.1016/b978-044450813-3/50005-9

24. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: ICML 2015. pp. 448–456. Proceedings of
Machine Learning Research (2015)

25. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding ma-
chine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS, vol. 10383, pp. 292–302. Springer (2017). https://doi.org/10.
1007/978-3-319-62075-6_20, https://doi.org/10.1007/978-3-319-62075-6_20

26. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas.
Journal of Symbolic Computation 69, 109–128 (2015). https://doi.org/https://doi.
org/10.1016/j.jsc.2014.09.032, https://www.sciencedirect.com/science/article/pii/
S074771711400100X, symbolic Computation in Software Science

27. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning
of theorem proving. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) NeurIPS 2018. pp. 8836–8847 (2018), https:
//papers.nips.cc/paper/2018/file/55acf8539596d25624059980986aaa78-Paper.pdf

28. Kaliszyk, C., Urban, J., Vyskočil, J.: Lemmatization for stronger reasoning in large
theories. In: Lutz, C., Ranise, S. (eds.) Frontiers of Combining Systems - 10th
International Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015.
Proceedings. LNCS, vol. 9322, pp. 341–356. Springer (2015). https://doi.org/10.
1007/978-3-319-24246-0_21, https://doi.org/10.1007/978-3-319-24246-0_21

29. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Computer
Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings 25. pp. 1–35. Springer (2013)

30. Lemmon, E.J., Meredith, C.A., Meredith, D., Prior, A.N., Thomas, I.: Calculi
of pure strict implication. In: Davis, J.W., Hockney, D.J., Wilson, W.K. (eds.)
Philosophical Logic, pp. 215–250. Springer Netherlands, Dordrecht (1969). https://
doi.org/10.1007/978-94-010-9614-0_17, reprint of a technical report, Canterbury
University College, Christchurch, 1957

31. Letz, R.: Tableau and Connection Calculi. Structure, Complexity, Implementation.
Habilitationsschrift, TU München (1999), available from http://www2.tcs.ifi.lmu.
de/~letz/habil.ps, accessed Jun 30, 2022

32. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableaux calculi. J. Autom. Reasoning 13(3), 297–337 (1994)

33. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: A high-performance the-
orem prover. J. Autom. Reasoning 8(2), 183–212 (1992). https://doi.org/10.1007/
BF00244282

34. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC, vol. 56, pp. 85–105 (2017). https:
//doi.org/10.29007/8mwc

https://doi.org/10.1007/978-3-642-28717-6_19
https://doi.org/10.1017/CBO9780511608865
https://doi.org/10.2307/2274956
https://doi.org/10.1016/b978-044450813-3/50005-9
https://doi.org/10.1016/b978-044450813-3/50005-9
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/https://doi.org/10.1016/j.jsc.2014.09.032
https://www.sciencedirect.com/science/article/pii/S074771711400100X
https://www.sciencedirect.com/science/article/pii/S074771711400100X
https://papers.nips.cc/paper/2018/file/55acf8539596d25624059980986aaa78-Paper.pdf
https://papers.nips.cc/paper/2018/file/55acf8539596d25624059980986aaa78-Paper.pdf
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-94-010-9614-0_17
https://doi.org/10.1007/978-94-010-9614-0_17
http://www2.tcs.ifi.lmu.de/~letz/habil.ps
http://www2.tcs.ifi.lmu.de/~letz/habil.ps
https://doi.org/10.1007/BF00244282
https://doi.org/10.1007/BF00244282
https://doi.org/10.29007/8mwc
https://doi.org/10.29007/8mwc


18 M. Rawson et al.

35. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam (1978)

36. Łukasiewicz, J.: Selected Works. North Holland (1970), edited by L. Borkowski
37. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes

rendus des séances de la Soc. d. Sciences et d. Lettres de Varsovie 23 (1930),
English translation in [36], p. 131–152

38. McCune, W.: Prover9 and Mace4 (2005–2010), http://www.cs.unm.edu/~mccune/
prover9

39. McCune, W.: OTTER 3.3 Reference Manual. Tech. Rep. ANL/MCS-TM-263,
Argonne National Laboratory (2003), https://www.cs.unm.edu/~mccune/otter/
Otter33.pdf, accessed Jun 30, 2022

40. McCune, W., Wos, L.: Experiments in automated deduction with condensed de-
tachment. In: Kapur, D. (ed.) CADE-11. LNCS (LNAI), vol. 607, pp. 209–223.
Springer (1992). https://doi.org/10.1007/3-540-55602-8_167

41. Meredith, C.A., Prior, A.N.: Notes on the axiomatics of the propositional calculus.
Notre Dame J. of Formal Logic 4(3), 171–187 (1963). https://doi.org/10.1305/
ndjfl/1093957574

42. Meredith, C.A.: Single axioms for the systems (C, N), (C, O) and (A, N) of the
two-valued propositional calculus. J. Computing Systems 1, 155–164 (1953)

43. Meredith, D.: In memoriam: Carew Arthur Meredith (1904–1976). Notre Dame
J. of Formal Logic 18(4), 513–516 (Oct 1977). https://doi.org/10.1305/ndjfl/
1093888116

44. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann ma-
chines. In: ICML 2010. pp. 807–814 (2010)

45. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2021),
http://oeis.org

46. Otten, J.: Restricting backtracking in connection calculi. AI Communications 23(2-
3), 159–182 (2010). https://doi.org/10.3233/AIC-2010-0464

47. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J.
Symb. Comput. 36(1-2), 139–161 (2003). https://doi.org/10.1016/S0747-7171(03)
00037-3

48. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: PyTorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

49. Piotrowski, B., Urban, J.: Guiding inferences in connection tableau by recur-
rent neural networks. In: Benzmüller, C., Miller, B.R. (eds.) CICM. LNCS, vol.
12236, pp. 309–314. Springer (2020). https://doi.org/10.1007/978-3-030-53518-6_
23, https://doi.org/10.1007/978-3-030-53518-6_23

50. Polu, S., Sutskever, I.: Generative language modeling for automated theorem prov-
ing. CoRR abs/2009.03393 (2020), https://arxiv.org/abs/2009.03393

51. Prior, A.N.: Logicians at play; or Syll, Simp and Hilbert. Australasian Journal of
Philosophy 34(3), 182–192 (1956). https://doi.org/10.1080/00048405685200181

52. Prior, A.N.: Formal Logic. Clarendon Press, Oxford, 2nd edn. (1962). https://doi.
org/10.1093/acprof:oso/9780198241560.001.0001

53. Pudlák, P.: Search for faster and shorter proofs using machine generated lemmas.
In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006. CEUR Workshop

http://www.cs.unm.edu/~mccune/prover9
http://www.cs.unm.edu/~mccune/prover9
https://www.cs.unm.edu/~mccune/otter/Otter33.pdf
https://www.cs.unm.edu/~mccune/otter/Otter33.pdf
https://doi.org/10.1007/3-540-55602-8_167
https://doi.org/10.1305/ndjfl/1093957574
https://doi.org/10.1305/ndjfl/1093957574
https://doi.org/10.1305/ndjfl/1093888116
https://doi.org/10.1305/ndjfl/1093888116
http://oeis.org
https://doi.org/10.3233/AIC-2010-0464
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-030-53518-6_23
https://doi.org/10.1007/978-3-030-53518-6_23
https://doi.org/10.1007/978-3-030-53518-6_23
https://arxiv.org/abs/2009.03393
https://doi.org/10.1080/00048405685200181
https://doi.org/10.1093/acprof:oso/9780198241560.001.0001
https://doi.org/10.1093/acprof:oso/9780198241560.001.0001


Lemmas: Generation, Selection, Application 19

Proc., vol. 192, pp. 34–53. CEUR-WS.org (2006), http://ceur-ws.org/Vol-192/
paper03.pdf

54. Rawson, M., Reger, G.: lazyCoP: Lazy paramodulation meets neurally guided
search. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842,
pp. 187–199. Springer (2021). https://doi.org/10.1007/978-3-030-86059-2_11

55. Reger, G., Tishkovsky, D., Voronkov, A.: Cooperating proof attempts. In: CADE-
25. pp. 339–355. Springer (2015). https://doi.org/10.1007/978-3-319-21401-6_23

56. Rezuş, A.: Tarski’s Claim thirty years later (2010). In: Witness Theory – Notes on
λ-calculus and Logic [57], pp. 217–225, preprint (2016): http://www.equivalences.
org/editions/proof-theory/ar-tc-20160512.pdf

57. Rezuş, A.: Witness Theory – Notes on λ-calculus and Logic, Studies in Logic,
vol. 84. College Publications, London (2020)

58. Sanchez-Lengeling, B., Reif, E., Pearce, A., Wiltschko, A.B.: A gentle introduction
to graph neural networks. Distill (2021). https://doi.org/10.23915/distill.00033,
https://distill.pub/2021/gnn-intro

59. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 27. pp. 495–507. No. 11716 in LNAI, Springer (2019). https://doi.
org/10.1007/978-3-030-29436-6_29

60. Schumann, J.M.P.: DELTA — A bottom-up preprocessor for top-down theorem
provers. In: CADE-12. LNCS (LNAI), vol. 814, pp. 774–777. Springer (1994). https:
//doi.org/10.1007/3-540-58156-1_58

61. Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended
Prolog compiler. J. Autom. Reasoning 4(4), 353–380 (1988). https://doi.org/10.
1007/BF00297245

62. Stickel, M.E.: Upside-down meta-interpretation of the model elimination theorem-
proving procedure for deduction and abduction. J. Autom. Reasoning 13(2), 189–
210 (1994). https://doi.org/10.1007/BF00881955

63. Sutcliffe, G.: The CADE ATP system competition — CASC. AI Magazine 37(2),
99–101 (2016)

64. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reasoning 59(4), 483–502 (2017)

65. Sutcliffe, G., Gao, Y., Colton, S.: A grand challenge of theorem discovery. In:
Worksh. Challenges and Novel Applications for Automated Reasoning, 19th IJ-
CAR. pp. 1–11 (2003), online: https://www.cs.miami.edu/home/geoff/Papers/
Conference/2003_SGC03_CNAAR-1-11.pdf

66. Ulrich, D.: A legacy recalled and a tradition continued. J. Autom. Reasoning 27(2),
97–122 (2001). https://doi.org/10.1023/A:1010683508225

67. Urban, J., Jakubův, J.: First neural conjecturing datasets and experiments. In:
Benzmüller, C., Miller, B.R. (eds.) CICM 2020. LNCS, vol. 12236, pp. 315–323.
Springer (2020). https://doi.org/10.1007/978-3-030-53518-6_24, https://doi.org/
10.1007/978-3-030-53518-6_24

68. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 – Machine Learner
for Automated Reasoning with Semantic Guidance. In: Armando, A., Baumgart-
ner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 441–456. Springer
(2008). https://doi.org/10.1007/978-3-540-71070-7_37

69. Veroff, R.: Finding shortest proofs: An application of linked inference rules. J. Au-
tom. Reasoning 27(2), 123–139 (2001). https://doi.org/10.1023/A:1010635625063

70. Walsh, M., Fitelson, B.: Answers to some open questions of Ulrich and Meredith
(2021), under review, preprint: http://fitelson.org/walsh.pdf, accessed Jun 30, 2022

http://ceur-ws.org/Vol-192/paper03.pdf
http://ceur-ws.org/Vol-192/paper03.pdf
https://doi.org/10.1007/978-3-030-86059-2_11
https://doi.org/10.1007/978-3-319-21401-6_23
http://www.equivalences.org/editions/proof-theory/ar-tc-20160512.pdf
http://www.equivalences.org/editions/proof-theory/ar-tc-20160512.pdf
https://doi.org/10.23915/distill.00033
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/3-540-58156-1_58
https://doi.org/10.1007/3-540-58156-1_58
https://doi.org/10.1007/BF00297245
https://doi.org/10.1007/BF00297245
https://doi.org/10.1007/BF00881955
https://www.cs.miami.edu/home/geoff/Papers/Conference/2003_SGC03_CNAAR-1-11.pdf
https://www.cs.miami.edu/home/geoff/Papers/Conference/2003_SGC03_CNAAR-1-11.pdf
https://doi.org/10.1023/A:1010683508225
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1023/A:1010635625063
http://fitelson.org/walsh.pdf


20 M. Rawson et al.

71. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for
theorem proving by deep graph embedding. In: Guyon, I., et al.
(eds.) NIPS 2017. pp. 2783–2793 (2017), http://papers.nips.cc/paper/
6871-premise-selection-for-theorem-proving-by-deep-graph-embedding

72. Wernhard, C.: The PIE system for proving, interpolating and eliminating. In:
Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR 2016. CEUR Workshop Proc.,
vol. 1635, pp. 125–138. CEUR-WS.org (2016), http://ceur-ws.org/Vol-1635/
paper-11.pdf

73. Wernhard, C.: Facets of the PIE environment for proving, interpolating and elim-
inating on the basis of first-order logic. In: Hofstedt, P., et al. (eds.) DECLARE
2019. LNCS (LNAI), vol. 12057, pp. 160–177 (2020). https://doi.org/10.1007/
978-3-030-46714-2_11

74. Wernhard, C.: Generating compressed combinatory proof structures — an ap-
proach to automated first-order theorem proving. In: Konev, B., Schon, C., Steen,
A. (eds.) PAAR 2022. CEUR Workshop Proc., vol. 3201. CEUR-WS.org (2022),
https://arxiv.org/abs/2209.12592

75. Wernhard, C.: CD Tools — Condensed detachment and structure generating
theorem proving (system description). CoRR abs/2207.08453 (2023). https:
//doi.org/10.48550/ARXIV.2207.08453

76. Wernhard, C., Bibel, W.: Learning from Łukasiewicz and Meredith: Investi-
gations into proof structures. In: Platzer, A., Sutcliffe, G. (eds.) CADE 28.
LNCS (LNAI), vol. 12699, pp. 58–75. Springer (2021). https://doi.org/10.1007/
978-3-030-79876-5_4

77. Wernhard, C., Bibel, W.: Investigations into proof structures. CoRR
abs/2304.12827 (2023). https://doi.org/10.48550/ARXIV.2304.12827, submit-
ted

78. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and
Practice of Logic Programming 12(1-2), 67–96 (2012). https://doi.org/10.1017/
S1471068411000494

79. Woltzenlogel Paleo, B.: Atomic cut introduction by resolution: Proof structuring
and compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355,
pp. 463–480. Springer (2010). https://doi.org/10.1007/978-3-642-17511-4_26

80. Wos, L., Winker, S., McCune, W., Overbeek, R., Lusk, E., Stevens, R., Butler, R.:
Automated reasoning contributes to mathematics and logic. In: Stickel, M.E. (ed.)
CADE-10. pp. 485–499. Springer (1990). https://doi.org/10.1007/3-540-52885-7_
109

81. Wos, L.: Automated reasoning and Bledsoe’s dream for the field. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 297–345.
Automated Reasoning Series, Kluwer Academic Publishers (1991). https://doi.
org/10.1007/978-94-011-3488-0_15

82. Wos, L.: The resonance strategy. Computers Math. Applic. 29(2), 133–178 (1995).
https://doi.org/10.1016/0898-1221(94)00220-F

83. Wos, L.: The power of combining resonance with heat. J. Autom. Reasoning 17(1),
23–81 (1996). https://doi.org/10.1007/BF00247668

84. Wos, L.: Lemma inclusion versus lemma adjunction. Association for Auto-
mated Reasoning Newsletter 44 (September 1999), online: https://aarinc.org/
Newsletters/044-1999-09.html, accessed 24 Feb 2023

85. Wos, L.: Conquering the Meredith single axiom. J. Autom. Reasoning 27(2), 175–
199 (2001). https://doi.org/10.1023/A:1010691726881

http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding
http://ceur-ws.org/Vol-1635/paper-11.pdf
http://ceur-ws.org/Vol-1635/paper-11.pdf
https://doi.org/10.1007/978-3-030-46714-2_11
https://doi.org/10.1007/978-3-030-46714-2_11
https://arxiv.org/abs/2209.12592
https://doi.org/10.48550/ARXIV.2207.08453
https://doi.org/10.48550/ARXIV.2207.08453
https://doi.org/10.1007/978-3-030-79876-5_4
https://doi.org/10.1007/978-3-030-79876-5_4
https://doi.org/10.48550/ARXIV.2304.12827
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1007/978-3-642-17511-4_26
https://doi.org/10.1007/3-540-52885-7_109
https://doi.org/10.1007/3-540-52885-7_109
https://doi.org/10.1007/978-94-011-3488-0_15
https://doi.org/10.1007/978-94-011-3488-0_15
https://doi.org/10.1016/0898-1221(94)00220-F
https://doi.org/10.1007/BF00247668
https://aarinc.org/Newsletters/044-1999-09.html
https://aarinc.org/Newsletters/044-1999-09.html
https://doi.org/10.1023/A:1010691726881


Lemmas: Generation, Selection, Application 21

86. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover (system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR
2020. LNCS, vol. 12167, pp. 489–507. Springer (2020). https://doi.org/10.1007/
978-3-030-51054-1_33, https://doi.org/10.1007/978-3-030-51054-1_33

https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33


22 M. Rawson et al.

A Manually Extracted Lemma Features

Below we specify the features that are manually extracted from lemmas and
used our linear model (Sect. 3). We also provide their types as follows:

– NatNum A natural number.
– NormalizedValue A number between 0 and 1.

A.1 Features of the Lemma’s D-term

lf_d_csize : NatNum
lf_d_tsize : NatNum
lf_d_height : NatNum

Compacted size, tree size and height of the lemma’s D-term.
lf_d_grd_csize : NatNum

Compacted size of the lemma’s D-term after replacing all variables with
0.

lf_d_major_minor_relation : NatNum
Describes the structural relationship of the subproofs of the major and
minor premise of the lemma. Can have the following values: 0 identical
or D-term is atomic; 1 is a strict superterm; 2 is a strict subterm; 3 none
of these relationships; 4 for nonground D-terms.

lf_d_number_of_terminals : NatNum
Number of subterms in the lemma’s D-term which are of the form
d(d1,d2) where neither of d1, d2 is a compound term.

A.2 Context Dependent Features of the Lemma’s D-Term

The features depend on the lemma as embedded in a given proof. They are only
available for training data extracted from proofs.
lfp_containing_proof : proof

The proof that contains the lemma. Specified as the atom that identifies
the proof. See also lf_proof.

lfp_d_occs : NatNum
If the lemma’s D-term is ground, the number of occurrences of the
lemma’s D-term in the proof’s D-term. If the lemma’s D-term is non-
ground, the number of subterm occurrences of the proof’s D-term that
are instances of the lemma’s D-term (note that these subterm occur-
rences may overlap).

lfp_d_incoming : NatNum
The number of incoming edges of the lemma in the minimal DAG rep-
resenting the proof’s D-term. This can not be meaningfully determined
for all lemma computation methods that yield s-lemmas.

lfp_d_occs_innermost_matches : NatNum
If the lemma’s D-term is ground, the same as lf_d_occs. If the lemma’s
D-term has variables, the number of subterm occurrences of the proof’s
D-term that would be rewritten by Innermost replacement.



Lemmas: Generation, Selection, Application 23

lfp_d_occs_outermost_matches : NatNum
If the lemma’s D-term is ground, the same as lf_d_occs. If the lemma’s
D-term has variables, the number of subterm occurrences of the proof’s
D-term that would be rewritten by Outermost replacement.

lfp_d_min_goal_dist : NatNum
Number of edges in the proof’s D-term of the shortest downward path
from the root to a subtree that is an instance of the lemma’s D-term.

A.3 Special Features of the Lemma’s Formula Components

lf_b_length : NatNum
Length of the Body component of the lemma’s formula.

lf_hb_distinct_hb_shared_vars : NatNum
Number of distinct variables that occur in the Head as well as in the
Body component of the lemma’s formula.

lf_hb_distinct_h_only_vars : NatNum
Number of distinct variables that occur in the Head but not the Body
component of the lemma’s formula.

lf_hb_distinct_b_only_vars : NatNum
Number of distinct variables that occur in the Body but not the Head
component of the lemma’s formula.

lf_hb_singletons : NatNum
Number of distinct variables with a single occurrence in Head and Body
taken together.

lf_hb_double_negation_occs : NatNum
Number of instances of n(n(_)) in Head and Body .

lf_hb_nongoal_symbol_occs : NatNum
Number of occurrences of symbols (functions, constants) in Head and
Body that do not appear in the problem’s goal. Context-dependent in
that it refers to the problem’s goal formula.

lf_h_excluded_goal_subterms : NatNum
Number of distinct subterms of the goal formula (after replacing con-
stants systematicall by variables) that are not a subterm of Head (mod-
ulo the variant relationship). Context-dependent in that it refers to the
problem’s goal formula.

lf_h_subterms_not_in_goal : NatNum
Number of distinct subterms of the head that are not a subterm of
the goal formula (after replacing constants systematicall by variables,
modulo the variant relationship). Context-dependent in that it refers to
the problem’s goal formula.

lf_hb_compression_ratio_raw_deflate : NormalizedValue
lf_hb_compression_ratio_treerepair : NormalizedValue
lf_hb_compression_ratio_dag : NormalizedValue



24 M. Rawson et al.

Indicates how much the lemma’s formula can be compressed. The value
is roughly compressed size divided by original tree size. That is, formu-
las with “much regularity” such that they can be compressed stronger
receive smaller values. The different properties realize this in variants for
different notions and implementations of compression. The raw_deflate
version depends on intrinsics of SWI-Prolog’s term representation and
possibly gives different results for the same formula, depending on how
it internally shares subterms.

lf_hb_organic : NatNum
Whether the formula is organic. A nonenmpty Body is translated
to an implication, e.g., if Body = [a,b,c], the considered formula is
i(a,i(b,i(c,Head))). Determined with Minisat. Values: 0: the formula is
organic; 1 the formula is not organic but weakly organic; 2 the formula is
not weakly organic. See also http://cs.christophwernhard.com/cdtools/
downloads/cdtools/pldoc/organic_cd.html.

lf_hb_name : Atom
A name of the formula if it is well known under some name. For a formula
with nonempty body the translation to implication is considered (as for
lf_hb_organic) and the name is prefixed with meta_. If the formula is
not known under some name, the value is zzz. See also named_axiom/2
in http://cs.christophwernhard.com/cdtools/downloads/cdtools/pldoc/
named_axioms_cd.html.

lf_hb_name_status : NatNum
Number indicating whether the formula has a name in the sense of
lf_hb_name: 0 if it has a name and an empty body, 1 if it has a nonempty
body and a name (prefixed with meta_), 2 otherwise.

A.4 General Features of the Lemma’s Formula Components

These features are specified below schematically with COMP for h, b, and hb,
referring the respective features for the Head component, the Body component
and both of the components joined together. The schema parameter ITEM for
var, const and fun refers to variables, constants (atomic values in Prolog syntax)
and function symbols with arity ≥ 1, respectively.
lf_COMP_csize : NatNum
lf_COMP_tsize : NatNum
lf_COMP_height : NatNum

Compacted size, tree size and height, respectively. (We use these notions,
which are also used for D-terms, here for formula terms.)

lf_COMP_distinct_vars : NatNum
Number of distinct variables.

lf_COMP_ITEM _occs : NatNum
Number of occurrences of syntactic objects of kind ITEM .

lf_COMP_occs_of_most_frequent_ITEM : NatNum
Maximum number of occurrences of a syntactic object of kind ITEM .

http://cs.christophwernhard.com/cdtools/downloads/cdtools/pldoc/organic_cd.html
http://cs.christophwernhard.com/cdtools/downloads/cdtools/pldoc/organic_cd.html
http://cs.christophwernhard.com/cdtools/downloads/cdtools/pldoc/named_axioms_cd.html
http://cs.christophwernhard.com/cdtools/downloads/cdtools/pldoc/named_axioms_cd.html


Lemmas: Generation, Selection, Application 25

B Implementation Details of the Network Architecture

This appendix supplements Sect. 3 with details of the network architecture and
hardware setup.

Graph Neural Network Architecture

We use a graph neural network with 8 convolution layers of 128 channels ar-
ranged into 4 residual blocks [18], followed by a hidden dense layer of 1024
neurons and a final dense layer that produces a single utility output. Batch nor-
malization [24] is applied before each convolutional layer, and the non-linearity
throughout is a rectified linear unit [44]. The precise configuration was found by
manual optimisation with respect to a holdout set.

Computation Used in the Experiments

We used a single NVIDIA A100 GPU and 50 CPU cores (100 hyperthreads).
Approximate times for a typical experiment are: lemma extraction 20 min, a
single iteration of proof search 5 min, model training 50 min, lemma selection
60 min. So far, we have run 151 experiments.



26 M. Rawson et al.

C Bar Chart Presentations of Selected Results

For convenience of the reader, we provide the following bar chart representations
of selected data from Tables 2, 3 and 4 in Sect. 3.

Table 6. Performance of different provers over 2 iterations of training a linear model
for 30 m time limit. Data from Table 2.

SGCD Base 285
SGCD Iter 1 281
SGCD Iter 2 283
SGCD Total 286

Prover9 Base 262
Prover9 Iter 1 257
Prover9 Iter 2 265
Prover9 Total 267

CMProver Base 103
CMProver Iter 1 121
CMProver Iter 2 126
CMProver Total 141

CCS-Vanilla Base 105
CCS-Vanilla Iter 1 130
CCS-Vanilla Iter 2 128
CCS-Vanilla Total 145

Table 7. Number of problems solved by Vampire (casc), E (autoschedule), Prover9 and
leanCoP without and with additional lemmas for 30 m time limit. Data from Table 3.

Vampire Base 263
Vampire Lemmas 283
Vampire Total 284

E Base 281
E Lemmas 275
E Total 286

Prover9 Base 260
Prover9 Lemmas 269
Prover9 Total 269

leanCoP Base 77
leanCoP Lemmas 113
leanCoP Total 113



Lemmas: Generation, Selection, Application 27

Table 8. Number of problems solved by Vampire (casc) and SGCD as we alter the
number of supplemented lemmas between 10 and 500. We use a time limit of 100 s.
Data from Table 4.

Prover #Lemmas #Solved problems

Vampire Base 227
Vampire 10 226
Vampire 25 242
Vampire 50 246
Vampire 100 258
Vampire 200 257
Vampire 500 258

SGCD Base 275
SGCD 10 278
SGCD 25 285
SGCD 50 284
SGCD 100 281
SGCD 200 283
SGCD 500 284



28 M. Rawson et al.

D Lemma Usage

Table 9 shows for the experiments described in Sect. 3 typical data on the usage
of supplied input lemmas, indicating how much proofs actually draw from the
supplied lemmas. The problems are either from the TPTP or, indicated by the
-tc postfix in the problem name (suggesting Tarski’s Claim [56]), single-axiom
problems derived from multi-axiom TPTP problems as described in in Sect. 3.1.
The data are from the first iteration of an experiment with SGCD, using a GNN
without manual features and 30 min time limit. Of the 312 problems, 60 ones
where proven with lemmas. The remaining problems were either proven already
with lemma generation (224 problems) or not proven (28 problems). The number
of selected input lemmas was 200. Closure under the subterm relationship for
their D-terms led to 327–601 lemmas, median 418 (column A). We refer to this
set as the subproof-closed lemmas. The compacted size of the 60 proofs was
between 12 and 119, median 41.5 (column B). The ratio of compacted size, that
is, the cardinality of the set of distinct non-atomic subproofs to the cardinality
of the intersection of this set with the subproof-closed lemmas (column C) was
between 0.63 and 0.96, median 0.87 (column C). This means that substantial
portions of the proofs are actually built-up from the supplied lemmas. If the
subproof closure is not considered, figures are quite different. The ratio with
respect to the intersection with the original set of 200 lemmas (column E) was
then only between 0 and 0.48, median 0.14 (column F).

Table 9. Usage of Learned Lemmas in Proofs

Problem A B C D E F

LCL019-1 445 51 45 0.88 3 0.06
LCL032-1 436 108 75 0.69 10 0.09
LCL037-1 463 119 75 0.63 8 0.07
LCL038-1 529 54 51 0.94 5 0.09
LCL054-1 504 54 50 0.93 4 0.07
LCL058-1 518 31 28 0.90 0 0.00
LCL060-1 460 40 36 0.90 8 0.20
LCL061-1 498 42 37 0.88 2 0.05
LCL062-1 493 45 38 0.84 6 0.13
LCL074-1 411 51 42 0.82 1 0.02
LCL084-2 520 53 50 0.94 6 0.11
LCL084-3 524 57 55 0.96 5 0.09
LCL100-1 508 23 18 0.78 0 0.00
LCL103-1 499 14 13 0.93 1 0.07
LCL122-1 510 35 32 0.91 3 0.09
LCL127-1 601 32 29 0.91 6 0.19
LCL129-1 491 12 11 0.92 2 0.17
LCL167-1 366 48 45 0.94 12 0.25
LCL374-1 482 42 38 0.90 7 0.17
LCL375-1 491 43 37 0.86 6 0.14
LCL376-1 504 30 26 0.87 2 0.07
LCL377-1 508 48 42 0.88 5 0.10
LCL388-1 500 54 51 0.94 2 0.04
LCL389-1 491 45 42 0.93 2 0.04
LCL391-1 455 70 62 0.89 18 0.26
LCL393-1 480 42 39 0.93 8 0.19
LCL394-1 480 44 39 0.89 7 0.16
LCL395-1 504 59 50 0.85 9 0.15
LCL403-1 483 59 56 0.95 7 0.12
LCL404-1 467 39 36 0.92 4 0.10

Problem A B C D E F

LCL028-1-tc 407 35 29 0.83 3 0.09
LCL030-1-tc 389 23 20 0.87 1 0.04
LCL031-1-tc 388 35 31 0.89 2 0.06
LCL054-1-tc 390 46 40 0.87 7 0.15
LCL058-1-tc 399 34 31 0.91 5 0.15
LCL060-1-tc 389 36 29 0.81 13 0.36
LCL061-1-tc 368 37 28 0.76 9 0.24
LCL062-1-tc 384 37 28 0.76 10 0.27
LCL084-2-tc 331 46 32 0.70 19 0.41
LCL084-3-tc 327 59 38 0.64 28 0.47
LCL114-1-tc 425 42 39 0.93 2 0.05
LCL116-1-tc 429 42 37 0.88 2 0.05
LCL373-1-tc 368 47 40 0.85 10 0.21
LCL374-1-tc 378 34 29 0.85 5 0.15
LCL375-1-tc 384 35 26 0.74 5 0.14
LCL376-1-tc 380 39 33 0.85 4 0.10
LCL377-1-tc 386 41 34 0.83 6 0.15
LCL382-1-tc 375 28 25 0.89 3 0.11
LCL383-1-tc 394 32 29 0.91 3 0.09
LCL385-1-tc 398 37 31 0.84 5 0.14
LCL388-1-tc 402 37 31 0.84 6 0.16
LCL389-1-tc 407 43 37 0.86 7 0.16
LCL390-1-tc 384 42 35 0.83 9 0.21
LCL391-1-tc 378 36 27 0.75 7 0.19
LCL392-1-tc 384 25 22 0.88 6 0.24
LCL393-1-tc 377 38 30 0.79 10 0.26
LCL394-1-tc 384 39 30 0.77 11 0.28
LCL395-1-tc 364 43 28 0.65 7 0.16
LCL403-1-tc 365 34 28 0.82 10 0.29
LCL404-1-tc 369 34 31 0.91 9 0.26



Lemmas: Generation, Selection, Application 29

E ”Best” Encountered Proofs of Individual TPTP
Problems

Tables 10 and 11 below show for each of the 196 pure CD problems in TPTP
8.1.215 characteristics of the “best” proof encountered in our experiments. Proofs
were there ordered by lexical comparison of the number tuple

⟨cdproof , csize, tsize, height ,nsimp, lemma-use, time⟩.

There cdproof is 0 or 1 depending on whether the proof is by CD (0) or some
other calculus or unreported (1).16 CD proofs are obtained directly from SGCD
and CCS-Vanilla, and via straightforward conversions from Prover9 and CM-
Prover. Compacted size, tree size and height of the proof, after n-simplification
[76], are considered as csize, tsize and height . If the proof is not a CD proof,
these values are not available. If n-simplification had no reducing effect on these
size measures, then nsimp is 0, otherwise 1. If the proof was obtained without
input lemmas, then lemma-use is 0, otherwise 1. The time in seconds used for
proving (with input lemmas only for the last prover invocation with the lemmas)
is time.

The tables show for each problem the data of the “best” proof: The prob-
lem and its rating in TPTP 8.1.2, the proof dimensions as csize/tsize/height ,
prefixed with n to indicate that n-simplification had reducing effect, time and
the prover or configuration that produced the proof. An asterisk (*) indicates
that the configuration involved lemma application. The suffix indicates the se-
lection method for the lemmas: -LIN* learning with a linear model, -GNN*
learning with a GNN model, -LIN-GNN* learning with a combined linear/GNN
model, -HEU-X* lemma selection by sorting according to heuristic features. For
all shown provers with exception of E and Vampire, the -LIN*, -GNN* and -
LIN-GNN* configurations involved iterative improvement. Also some results for
special configurations with heuristic lemma selection are included, indicated by
the following prover names: Prover9-HEU-1* is Prover9 with 1,000 PSP optim
input lemmas, Vampire-HEU-2* is Vampire with 1,000 PSP plain input lemmas
and SGCD-HEU-3* is the setup described in Sect. 4. The data from the unstarred
versions are from base runs of our experiments, before learning. A comprehen-
sive table that extends Tables 10 and 11 is at http://cs.christophwernhard.com/
cdtools/exp-lemmas/lemmas.html.

These tables for specific TPTP problems facilitate comparison with other
provers and approaches. They include solutions for 189 of the 196 problems,
where 6 of the 7 unsolved problems are rated 1.00 and one is rated 0.86. This
shows that our discourse indeed takes place at the very edge of the overall state
15 Those CD problems that remain after excluding from all 206 CD problems in the

TPTP those two with status satisfiable, those five with a form of detachment that is
based on implication represented by disjunction and negation, and those three with
a non-atomic goal theorem. In our experiments we also used further problems, 312
in total, derived from these TPTP problems.

16 In applications with CD, e.g [70], usually CD proofs (see Sect. 2.2) are desired.

http://cs.christophwernhard.com/cdtools/exp-lemmas/lemmas.html
http://cs.christophwernhard.com/cdtools/exp-lemmas/lemmas.html


30 M. Rawson et al.

of the art of first-order proving, as far as CD problems are concerned. The
tables show that the lemma-enhanced configurations become more relevant for
problems with increased difficulty rating. However, for four of the most difficult
solved problems, lemmas selected with manually crafted heuristic led to success.
It remains to cover this also with machine-learned lemma selection, where the
identified difficult problems provide test cases. Only four of the proven problems
could be not be proven with CD proofs, two of them actually quickly by Vampire
and E, which calls for a deeper investigation of their non-CD proofs, their possible
proof translation to CD, and the possible role of non-unit lemmas corresponding
to binary resolution there.

Table 10. Data of “best” encountered proofs I/II

Problem Rtg Dims Time Prover

LCL006-1 0.00 5/7/4 0.06 CCS-Vanilla
LCL007-1 0.00 1/1/1 0.01 SGCD
LCL008-1 0.00 5/5/5 0.01 SGCD
LCL009-1 0.00 7/17/6 0.06 CCS-Vanilla
LCL010-1 0.00 5/8/5 0.03 SGCD
LCL011-1 0.00 7/16/7 0.07 CCS-Vanilla
LCL013-1 0.00 2/2/2 0.01 SGCD
LCL015-1 0.00 24/73/19 162.96 SGCD
LCL022-1 0.00 8/33/7 0.46 CCS-Vanilla
LCL023-1 0.00 7/18/7 0.09 CCS-Vanilla
LCL025-1 0.00 6/9/6 0.23 CCS-Vanilla
LCL026-1 0.00 22/29/15 2.76 SGCD
LCL027-1 0.00 3/3/3 0.01 SGCD
LCL029-1 0.00 7/14/6 10.79 CCS-Vanilla
LCL033-1 0.00 6/7/6 0.02 SGCD
LCL034-1 0.00 24/46/19 1.85 SGCD
LCL035-1 0.00 5/6/5 0.02 SGCD
LCL036-1 0.00 n 11/59/11 596.99 CCS-Vanilla
LCL038-1 0.00 52/119/27 86.11 SGCD-LIN-GNN*
LCL041-1 0.00 3/3/2 0.03 SGCD
LCL043-1 0.00 2/2/2 0.01 SGCD
LCL044-1 0.00 3/3/3 0.02 SGCD
LCL045-1 0.00 5/5/4 0.06 CMProver
LCL046-1 0.00 2/2/2 0.01 SGCD
LCL047-1 0.00 16/22/5 0.62 SGCD
LCL048-1 0.00 16/19/13 113.13 SGCD
LCL049-1 0.00 20/24/14 105.82 SGCD
LCL050-1 0.00 22/27/17 112.76 SGCD
LCL051-1 0.00 21/26/10 128.74 SGCD
LCL052-1 0.00 17/26/13 69.77 SGCD
LCL053-1 0.00 18/28/15 81.14 SGCD
LCL055-1 0.00 15/24/11 50.73 SGCD
LCL056-1 0.00 16/25/12 76.68 SGCD
LCL057-1 0.00 20/30/16 241.43 SGCD
LCL058-1 0.00 30/68/17 1.15 SGCD-LIN*
LCL059-1 0.00 15/19/5 854.67 CMProver
LCL064-1 0.00 6/9/6 0.12 CCS-Vanilla
LCL064-2 0.00 6/9/6 0.14 CCS-Vanilla
LCL065-1 0.00 7/9/7 0.04 SGCD
LCL066-1 0.00 7/7/7 0.07 SGCD
LCL067-1 0.00 10/20/6 914.91 CCS-Vanilla
LCL068-1 0.00 15/26/11 4.36 SGCD
LCL069-1 0.00 8/8/5 0.04 SGCD
LCL070-1 0.00 10/18/6 178.51 CCS-Vanilla
LCL071-1 0.00 13/16/6 24.78 SGCD
LCL072-1 0.00 7/8/4 0.02 SGCD
LCL075-1 0.00 8/20/8 0.16 Prover9
LCL076-1 0.00 7/9/7 0.06 SGCD
LCL076-2 0.00 1/1/1 0.01 SGCD

Problem Rtg Dims Time Prover

LCL077-1 0.00 6/8/6 0.05 SGCD
LCL079-1 0.00 3/3/3 0.02 SGCD
LCL080-1 0.00 9/10/8 383.43 CCS-Vanilla
LCL080-2 0.00 9/12/6 0.31 SGCD
LCL081-1 0.00 6/10/6 0.06 SGCD
LCL082-1 0.00 6/7/6 0.02 SGCD
LCL083-1 0.00 11/15/11 0.35 SGCD
LCL083-2 0.00 8/9/8 0.06 SGCD
LCL085-1 0.00 23/29/20 13.85 SGCD
LCL086-1 0.00 n 10/22/8 77.91 CCS-Vanilla
LCL087-1 0.00 8/12/8 0.03 SGCD
LCL088-1 0.00 12/18/8 1157.65 CMProver
LCL089-1 0.00 n 10/27/10 254.25 CCS-Vanilla
LCL090-1 0.00 14/20/14 203.68 SGCD
LCL091-1 0.00 11/16/10 35.83 CMProver
LCL092-1 0.00 n 12/34/11 369.00 CCS-Vanilla
LCL093-1 0.00 25/29/16 103.38 SGCD
LCL094-1 0.00 16/26/11 0.56 SGCD
LCL095-1 0.00 17/21/16 143.91 SGCD
LCL096-1 0.00 4/4/3 0.02 SGCD
LCL097-1 0.00 4/6/4 0.03 SGCD
LCL098-1 0.00 4/6/4 0.02 SGCD
LCL101-1 0.00 7/14/6 0.06 CCS-Vanilla
LCL102-1 0.00 7/7/4 0.06 CMProver
LCL103-1 0.00 10/16/9 984.38 CCS-Vanilla
LCL104-1 0.00 6/15/5 0.09 CCS-Vanilla
LCL106-1 0.00 4/4/4 0.01 SGCD
LCL107-1 0.00 5/9/5 0.03 SGCD
LCL108-1 0.00 7/20/6 0.04 Prover9
LCL110-1 0.00 7/9/6 1.01 CCS-Vanilla
LCL111-1 0.00 5/5/3 0.03 SGCD
LCL112-1 0.00 8/10/7 6.77 CCS-Vanilla
LCL113-1 0.00 15/18/5 1286.31 CMProver
LCL114-1 0.00 21/31/8 525.31 SGCD
LCL115-1 0.00 11/16/9 0.24 SGCD
LCL116-1 0.00 24/52/13 10.65 Prover9
LCL117-1 0.00 3/4/3 0.03 SGCD
LCL118-1 0.00 7/8/7 0.02 SGCD
LCL120-1 0.00 6/7/6 0.03 SGCD
LCL121-1 0.00 12/92/12 649.07 CCS-Vanilla
LCL123-1 0.00 10/45/7 0.75 CCS-Vanilla
LCL126-1 0.00 4/4/4 0.01 SGCD
LCL127-1 0.00 22/49/13 116.04 CMProver-LIN*
LCL128-1 0.00 24/352/19 4.05 Prover9
LCL129-1 0.00 11/42/11 336.22 CCS-Vanilla
LCL130-1 0.00 5/8/5 0.02 SGCD
LCL131-1 0.00 11/50/11 125.01 CCS-Vanilla
LCL256-1 0.00 20/31/13 114.94 SGCD
LCL257-1 0.00 7/13/6 0.09 CCS-Vanilla



Lemmas: Generation, Selection, Application 31

Table 11. Data of “best” encountered proofs II/II

Problem Rtg Dims Time Prover

LCL355-1 0.00 1/1/1 0.01 SGCD
LCL356-1 0.00 2/3/2 0.01 SGCD
LCL357-1 0.00 2/2/2 0.01 SGCD
LCL358-1 0.00 4/5/4 0.02 SGCD
LCL359-1 0.00 3/5/3 0.02 SGCD
LCL360-1 0.00 1/1/1 0.01 SGCD
LCL361-1 0.00 4/4/3 0.02 SGCD
LCL362-1 0.00 4/4/4 0.02 SGCD
LCL363-1 0.00 6/6/5 0.03 SGCD
LCL364-1 0.00 9/14/8 45.56 CCS-Vanilla
LCL366-1 0.00 14/16/5 693.32 CMProver
LCL367-1 0.00 15/19/5 1.42 SGCD
LCL378-1 0.00 14/23/10 38.98 SGCD
LCL379-1 0.00 19/28/15 99.51 SGCD
LCL380-1 0.00 17/26/13 225.93 SGCD
LCL381-1 0.00 18/27/14 4.67 SGCD
LCL385-1 0.00 30/44/16 293.39 SGCD
LCL386-1 0.00 27/39/14 234.04 SGCD
LCL387-1 0.00 27/46/14 15.98 SGCD
LCL388-1 0.00 38/109/19 92.99 SGCD
LCL389-1 0.00 37/411/22 4.69 Prover9
LCL396-1 0.00 21/31/17 193.84 SGCD
LCL397-1 0.00 7/8/7 0.17 SGCD
LCL398-1 0.00 3/3/3 0.04 SGCD
LCL399-1 0.00 12/13/11 6.45 SGCD
LCL400-1 0.00 n 31/233/20 0.85 Prover9
LCL401-1 0.00 29/62/15 320.04 SGCD
LCL402-1 0.00 n 30/191/20 0.41 Prover9
LCL404-1 0.00 36/409/22 4.36 Prover9
LCL405-1 0.00 26/34/14 199.42 SGCD
LCL416-1 0.00 10/17/8 14.75 SGCD
LCL012-1 0.14 18/31/16 62.51 SGCD
LCL014-1 0.14 10/15/7 11.58 CCS-Vanilla
LCL016-1 0.14 39/89/14 195.72 SGCD
LCL017-1 0.14 50/129/17 194.28 SGCD
LCL018-1 0.14 22/54/16 147.63 SGCD
LCL019-1 0.14 35/132/18 202.29 SGCD
LCL021-1 0.14 68/225/19 331.46 SGCD
LCL024-1 0.14 10/15/9 79.22 CMProver
LCL030-1 0.14 8/16/6 62.68 CCS-Vanilla
LCL031-1 0.14 23/26/10 209.34 SGCD
LCL040-1 0.14 8/9/5 15.85 CCS-Vanilla
LCL042-1 0.14 8/8/4 499.52 CCS-Vanilla
LCL054-1 0.14 33/283/21 218.11 Prover9
LCL060-1 0.14 36/76/17 0.41 CCS-Vanilla-LIN*
LCL084-2 0.14 n 53/87/25 80.13 SGCD-GNN*
LCL084-3 0.14 52/98/23 295.65 SGCD-LIN-GNN*
LCL100-1 0.14 18/44/11 187.43 CCS-Vanilla-LIN*
LCL122-1 0.14 25/142/10 13.46 SGCD-LIN*

Problem Rtg Dims Time Prover

LCL166-1 0.14 51/155/18 182.67 SGCD
LCL369-1 0.14 22/34/16 2.82 SGCD
LCL370-1 0.14 27/39/13 242.93 SGCD
LCL371-1 0.14 27/39/13 233.94 SGCD
LCL373-1 0.14 37/68/14 708.81 SGCD
LCL382-1 0.14 29/53/18 6.21 SGCD
LCL384-1 0.14 13/23/5 683.01 CMProver
LCL390-1 0.14 31/45/14 281.13 SGCD
LCL403-1 0.14 40/94/16 30.54 SGCD-LIN*
LCL032-1 0.29 n 67/15362/35 106.73 Prover9
LCL099-1 0.29 20/41/6 459.30 SGCD
LCL105-1 0.29 37/109/11 90.54 Prover9-LIN*
LCL119-1 0.29 83/28624/27 76.07 Prover9
LCL365-1 0.29 10/15/9 429.17 CCS-Vanilla
LCL368-1 0.29 21/32/16 2.10 SGCD
LCL372-1 0.29 27/46/13 12.87 SGCD
LCL383-1 0.29 33/52/15 41.99 SGCD
LCL391-1 0.29 40/161/20 65.93 SGCD
LCL392-1 0.29 30/52/14 26.83 SGCD
LCL393-1 0.29 37/87/17 46.13 SGCD
LCL020-1 0.43 106/24989/37 21.65 Prover9-LIN*
LCL028-1 0.43 34/67/15 295.28 SGCD
LCL061-1 0.43 39/92/16 87.96 SGCD
LCL062-1 0.43 44/115/21 285.10 SGCD-LIN*
LCL124-1 0.43 27/130/10 76.25 SGCD-LIN*
LCL125-1 0.43 33/460/16 33.14 Prover9
LCL167-1 0.43 48/265/22 27.53 SGCD-GNN*
LCL374-1 0.43 33/77/17 42.47 SGCD
LCL375-1 0.43 43/103/20 56.44 SGCD-LIN*
LCL376-1 0.43 30/76/15 58.17 SGCD-GNN*
LCL394-1 0.43 41/81/17 267.22 SGCD
LCL875-1 0.43 0.298 Vampire
LCL037-1 0.57 n 72/45359/39 172.29 Prover9
LCL074-1 0.57 n 50/136/18 998.93 SGCD
LCL377-1 0.57 38/78/15 62.71 SGCD
LCL395-1 0.57 45/112/20 140.94 SGCD
LCL428-1 0.57 0.227 E
LCL109-1 0.86 72/348/22 226.55 Prover9-HEU-1*
LCL417-1 0.86 647.386 Vampire-HEU-2*
LCL422-1 0.86
LCL876+1 0.93 70/396/22 227.17 Prover9-HEU-1*
LCL063-1 1.00 943.481 E
LCL073-1 1.00 46/3276/40 16.55 SGCD-HEU-3*
LCL418-1 1.00
LCL419-1 1.00
LCL420-1 1.00
LCL421-1 1.00
LCL425-1 1.00
LCL426-1 1.00



32 M. Rawson et al.

F Our Proof of LCL073-1 with MGTs

The following figures present our proof of LCL073-1 (Sect. 4) together with its
lemma formulas, the MGTs of subproofs, in the notation for CD applications
used in the classical literature.

1. CCCCCpqCNrNsrtCCtpCsp
2. CCCppqCrq = D1D1D11
3. CpCqCrr = D22
4. CCCpCqqrCsr = D13
5. CCCpqrCqr = D14
6. CpCCpqCrq = D51
7. CpCCCqprCsr = D56
8. CCCpqrCCCqsCNrNpr = DDD1D176n
9. CCCpqCNCCCrpsCtsNrCCCrpsCts = D86

10. CCCpqCNCrpNCCCsCptuCvuCrp = D8D19
11. CpCCqrCCNqNpr = DD1D1D4.10.1
12. CCCpNqCCqrCsrCtCCqrCsr = D1D6D1DD1D9D9DD11.341
13. CCpCqrCCCsCtNprCqr = DDD12.D5D8.12.n7
14. CCCCCpqrstCCCqrst = D1D13.D1D13.5

*15. CCpqCCqrCpr = DD1D13.DDDD13.69.11.10.D14.D14.1

Fig. 3. Our proof of LCL073-1 in the notation of Meredith [41,77]. For each factor
of the overall D-term the argument term of its MGT is there shown in Łukasiewicz’s
notation.

1. P(i(i(i(i(i(p, q), i(n(r), n(s))), r), t), i(i(t, p), i(s, p))))
2. P(i(i(i(p, p), q), i(r, q))) = D(1, D(1, D(1, 1)))
3. P(i(p, i(q, i(r, r)))) = D(2, 2)
4. P(i(i(i(p, i(q, q)), r), i(s, r))) = D(1, 3)
5. P(i(i(i(p, q), r), i(q, r))) = D(1, 4)
6. P(i(p, i(i(p, q), i(r, q)))) = D(5, 1)
7. P(i(p, i(i(i(q, p), r), i(s, r)))) = D(5, 6)
8. P(i(i(i(p, q), r), i(i(i(q, s), i(n(r), n(p))), r))) = D(D(D(1, D(1, 7)), 6), n)
9. P(i(i(i(p, q), i(n(i(i(i(r, p), s), i(t, s))), n(r))), i(i(i(r, p), s), i(t, s)))) = D(8, 6)

10. P(i(i(i(p, q), i(n(i(r, p)), n(i(i(i(s, i(p, t)), u), i(v, u))))), i(r, p))) = D(8, D(1, 9))
11. P(i(p, i(i(q, r), i(i(n(q), n(p)), r)))) = D(D(1, D(1, D(4, 10))), 1)
12. P(i(i(i(p, n(q)), i(i(q, r), i(s, r))), i(t, i(i(q, r), i(s, r)))))

= D(1, D(6, D(1, D(D(1, D(9, D(9, D(D(11, 3), 4)))), 1))))
13. P(i(i(p, i(q, r)), i(i(i(s, i(t, n(p))), r), i(q, r)))) = D(D(D(12, D(5, D(8, 12))),n), 7)
14. P(i(i(i(i(i(p, q), r), s), t), i(i(i(q, r), s), t))) = D(1, D(13, D(1, D(13, 5))))

*15. P(i(i(p, q), i(i(q, r), i(p, r))))
= D(D(1, D(13, D(D(D(D(13, 6), 9), 11), 10))), D(14, D(14, 1)))

Fig. 4. Our proof of LCL073-1 with the ATP-oriented notation for formulas and D-
terms of the paper, arranged such that it mimics Meredith’s notation.


	Lemmas: Generation, Selection, Application

