
Michael Rawson

Verified Metatheory and Type

Inference for a Name-Carrying

Simply-Typed λ-Calculus

Computer Science Tripos – Part II

Robinson College

April 27, 2023

1



2



Proforma

Name: Michael Rawson

College: Robinson College

Project Title: Verified Metatheory and Type Inference for

a Name-Carrying Simply-Typed λ-Calculus

Examination: Computer Science Tripos – Part II, July 2017

Word Count: 11,9761

Project Originator: Dr. Dominic Mulligan

Supervisors: Dr. Dominic Mulligan and Dr. Victor Gomes

Original Aims of the Project

I aim to create a mechanisation in Isabelle of the simply-typed λ-calculus, together with

a verified algorithm for type inference. Emphasis is placed on the treatment of binders in

the calculus and the approach taken with representing α-equivalence.

Work Completed

This project meets all proposed success criteria, and adds two extensions. I have imple-

mented the calculus, encoded the α-equivalence equivalence relation, and specified typing

rules and a type inference algorithm for the calculus. A number of correctness proofs

accompany this implementation. Further to this, I implemented extensions, one to add

unit and pair values and corresponding types to the implementation, and one to show the

confluence property of the calculus.

Special Difficulties

None.

1As computed by texcount

3



Declaration

I, Michael Rawson of Robinson College, being a candidate for Part II of the Computer

Science Tripos, hereby declare that this dissertation and the work described in it are my

own work, unaided except as may be specified below, and that the dissertation does not

contain material that has already been used to any substantial extent for a comparable

purpose.

Signed

Date

4



Contents

1 Introduction 9

1.1 Project summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Completed work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preparation 11

2.1 λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Simple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The problem of α-equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Nominal techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Requirements analysis and engineering . . . . . . . . . . . . . . . . . . . . 17

2.7 Starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Implementation 21

3.1 Freshness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Swappings and permutations . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Raw λ-terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 α-equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Type inference algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 λ-terms with α-equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Typing judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Substitution and β-reduction . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Normal forms and the progress property . . . . . . . . . . . . . . . 38

3.4.4 Many-step reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.5 Inference correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Unit and pair terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Evaluation 43

4.1 Framework for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Practical examples and property testing . . . . . . . . . . . . . . . . . . . 45

5



4.3 Benchmarking and performance . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Comparison to previous work . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Chained tactics vs. Isar . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Church- vs. Curry-style types . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Approaches to binders . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.4 Nominal implementation . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion 59

5.1 List of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 60

A Project Proposal 65

6



7

Acknowledgements

I wish to acknowledge the efforts of my supervisors in guiding me in this project. Both

offered advice when I needed it, and let me get on when I didn’t — an unusual and

invaluable skill!



8



Chapter 1

Introduction

Lambda calculi express abstract computation, forming part of research into computability

theory [1], programming languages [2], and type systems. My dissertation describes the

implementation of machine-checked proofs in the proof assistant Isabelle concerning a

typed λ-calculus, culminating with correctness properties of the calculus. I also produce

executable Haskell code that implements a type inference algorithm for the calculus,

extracting the code from the formal implementation, and supply a proof of correctness of

the algorithm.

I draw on areas in theoretical Computer Science for my project: λ-calculi, types,

formal logic, and verified reasoning. By verifying a typed calculus, the project required

some type theory in addition to results about the λ-calculus, including properties such as

the preservation of types under β-reduction. Verification itself requires knowledge (and

precise application) of formal logic, as an intuitive argument will not satisfy the checker.

Finally, the techniques used with informal proof versus verified proof must differ: while

technology has improved so that an informal proof’s structure remains in a verified proof,

details that a human would discount as trivial are necessarily included.

1.1 Project summary

During the project, I implemented the following:

• Encoding the calculus in Isabelle.

• α-equivalence, with an unusual approach.

• A typing relation on the calculus.

• An executable type inference algorithm, shown to be correct against the typing

relation.

• Extracted code for this inference algorithm.

• Safety properties of the calculus: progress, preservation, and safety.

9



10 CHAPTER 1. INTRODUCTION

For extension work, I implemented unit and pair terms and associated types, and

showed that β-reduction is confluent, using a proof technique due to Tait, Martin-Löf,

and Takahashi.

1.2 Previous work

The theory behind typed λ-calculi is well-known: Church’s λ-calculus has a distinguished

history [3], as do types since Russell’s original theory of types [4]. My work used well-

established knowledge, so there was little risk of attempting a mathematically-impossible

project. Formal verification also has previous work that can be re-used: proof assistants

now include automation tools, tactics and theorem provers, and libraries of formalised

mathematics: the Mizar system [5] contains a library of over 50,000 proofs.

There is also more directly-related previous work. Several implementations of typed

λ-calculus have been verified (see for instance the PoplMark challenge [6], a set of chal-

lenges designed to measure progress in mechanising programming language metatheory)

using an assortment of techniques, all of which I can draw on for inspiration.

1.3 Completed work

I have met all criteria specified in the project proposal, and have added some extensions.

I define and encode in Isabelle a simply-typed calculus, and show several results about

α-equivalence in the calculus. Using this encoding, I then add a typing relation, type

inference and β-reduction to the calculus, then show the main results: progress, type-

preservation, and safety. Finishing, I show that the type inference algorithm is correct

with respect to the type system, and hence also has safety properties.



Chapter 2

Preparation

After identifying the main goals, these coarse requirements are refined to be precise about

objectives, and to drive development. This results in a set of requirements that can be

analysed to predict problems and measure success. Once any problems are resolved, work

can begin on implementation. Some mathematics is required to increase precision, and can

be used to direct refinement of requirements. In this chapter I discuss the theory required

to begin formalisation, briefly introduce Isabelle, and produce a list of requirements.

2.1 λ-Calculus

The λ-calculus [7] is a system of computation, represented by operations on terms.

Definition. Terms M are inductively defined:

1. A variable, x, is always a term. These may be sub-categorised to be bound if some

binder in an expression binds them, or free, if there is no such binder.

2. If M is a term, abstractions λx.M are also terms. This intuitively represents an

anonymous function returning M(x)), and binds x in M .

3. If M and N are terms, applying M to N is also a term, (M N).

Terms can be represented with an algebraic datatype. For instance, in Standard ML:

datatype 'a trm =

Var of 'a

| Fn of ('a * 'a trm)

| App of ('a trm * 'a trm)

Computation here is performed by β-reduction: terms reduce to another term accord-

ing to a series of rules, and hence computation occurs by sequential reductions.

Definition. M →β M ′ when one of the following holds:

1. If left or right subterms of an application reduce, then the application also reduces:

if M →β M ′, then (M N) →β (M ′ N).

11



12 CHAPTER 2. PREPARATION

2. If M →β M ′, then λx.M becomes λx.M ′.

3. If a term is of the form ((λx.M) N), then it is a β-redex, and reduces to

M [x := N ]

( viz. M with occurrences of x substituted in a capture-avoiding fashion for N).

The order in which reduction steps occur in a computation is important for many

applications of the λ-calculus, but I did not use this property in my dissertation. Substi-

tution, used informally above, is defined recursively.

Definition. Suppose N is substituted for x in M , and y is any name that is not x. Then

the result, M [x := N ], is

M [x := N ] =



N M = x

M M = y

M M = λx.M ′

λy. (M ′[x := N ]) M = λy.M ′

(M1[x := N ] M2[x := N ]) M = (M1 M2)

β-reduction has confluence property. Confluence states that if A reduces in many

steps to B, and similarly on another path to C, there is a D such that B and C reduce to

D, asserting that the order of reductions does not affect the final result. There are terms

that cannot be further reduced, like x, λy.y, or (f x). These terms are considered to be

values, or in normal form.

Definition. Variables x are in normal form. Applications are in normal form if they are

not a β-redex and both subterms are themselves in normal form. Binders are in normal

form if their bound subterm is in normal form.

2.2 Simple types

Untyped calculi have disadvantages. No types mean that unexpected constructions can

occur, such as applying a non-function, which a type system generally prevents. “Pro-

grams” in the calculus may also fail to terminate: a sequence of reductions may not

necessarily finish. Consider

Ω = (λx. (x x)) (λx. (x x))

Then the only possible reduction for Ω produces Ω, which may not terminate. The

untyped calculus can be extended to include a type system while maintaining an approach

to names: a type is simply added to each binder, so λx.M becomes λ(x : T ).M , for an

arbitrary T . Note that I use this, the Church style of typing, exclusively in my project.

Definition. Simple types τ are either



2.2. SIMPLE TYPES 13

var
Γ(x) = τ

Γ ⊢ x : τ

fn
Γ{x 7→ τ} ⊢ M : σ

Γ ⊢ λ(x : τ).M : τ → σ

app
Γ ⊢ M : τ → σ Γ ⊢ N : τ

Γ ⊢ (M N) : σ

Figure 2.1: typing rules for the simply-typed calculus

1. A base type, say ι.

2. An arrow type τ1 → τ2 from one type to another.

Adding simple types to the binders of the untyped calculus produces the simply-typed

λ-calculus. The typing relation Γ ⊢ M : τ is given inductively in Figure 2.1. Γ here is a

typing context: a partial function from variables to types.

I show several correctness properties that are not possible in an untyped calculus:

progress, type preservation (subject reduction), and safety. These capture semantics of

Milner’s [8] maxim “well-typed programs do not go wrong”.

Definition. The progress property asserts if Γ ⊢ M : τ , M is either in normal form or

can be reduced further.

Definition. The preservation property holds if, assuming Γ ⊢ M : τ and M reduces to

M ′, Γ ⊢ M ′ : τ .

Generally these are desirable properties: expressions should not “get stuck” computing

non-values, or change type mid-reduction.

Definition. A language has the safety property if, when reducing a well-typed term M by

a number of steps resulting in M ′, M ′ is either in normal form, or can be reduced further.

This property is the main goal of verification: it shows that if a term is well-typed,

there is no scenario in which reduction fails — the term reduces, or computation has

finished.

Type inference is the process of producing a type τ for M such that Γ ⊢ M : τ . One

advantage of the simply-typed calculus is that type inference is decidable, and straightfor-

ward, with no unification steps (in the Church style) or complexity that more advanced

typing systems encounter. The type inference algorithm infer(Γ,M) can be described by

infer (Γ,M) =


Γ(x) M = x

τ → infer (Γ{x 7→ τ}, N) M = λ(x : τ).N

apply (infer (Γ, A) , infer (Γ, B)) M = (A B)

where apply (τ → σ, τ) produces σ. All other input is undefined. I use an option type to

propagate errors upwards, which the above omits for simplicity. Type inference can be

shown correct with respect to a type system if it exclusively infers correct types (sound-

ness), and infers all possible correct types (completeness). With these properties, the

typing rules and the inference algorithm are equivalent.



14 CHAPTER 2. PREPARATION

2.3 The problem of α-equivalence

This representation, with names and binders, is insufficient. It is convenient to reason

that e.g. λx.x and λy.y are equal: they produce identical results on all inputs. However,

they differ structurally: x is not the same as y. This reasoning is called α-equivalence.

Definition. The α-equivalence relation ≡α is the least congruence on terms such that

λx.M ≡α λy.M ′

where y does not occur free in M , and M ′ is M with x substituted for y (avoiding captures).

Such an equivalence could be assumed whenever required. Nonetheless, it is cumber-

some to carry such an assumption, and proof assistants often reason better about equality

than equivalence relations, as automation tools are tuned for equality. This problem can

be solved using quotient types [9].

Definition. A quotient type Q is a base type R, an equivalence relation ∼ on R, and

functions Abs : R → Q and Rep : Q → R. Items q1 : Q and q2 : Q are equal iff

Rep q1 ∼ Rep q2.

I now define a quotient type for λ-terms modulo α-equivalence by encoding a datatype

for pre-terms without equivalence as before, then the new type is a quotient over α-

equivalence. While we now use equality directly, this equivalence relation is awkward

to use. There are alternative ways of handling names, the most prominent de Bruijn

indices [10], Higher-Order Abstract Syntax [11] (HOAS), and nominal techniques [12].

Ideally, these would allow the “Barendregt convention” for reasoning about names: for

any term, assume that the bound variables are distinct, and fresh for a given set [7]. This

simplifies proofs about name-carrying syntax, and is useful in informal reasoning about

λ-calculus.

De Bruijn indices remove names altogether, and instead use natural numbers for bound

variables to refer to the number of other binders between the variable and the respective

binder.

λx.λy.x

becomes

λ.λ.1

using de Bruijn indices. α-equivalence is now equality, as all bound names have been

removed. The downside is that using this representation for argument is unintuitive, using

numbers rather than names. There are variations on these indices, including de Bruijn

levels (counting binders from the start, not relative to the variable — the constant function

becomes λ.λ.0), and conventions separating free and bound variables [13] syntactically,

but the disadvantage stands: reasoning is complicated by arithmetic.

HOAS uses the host’s (in this case Isabelle) own implementation of names to handle

binding. The datatype presented earlier would then be



2.4. NOMINAL TECHNIQUES 15

datatype trm =

Fn of (trm -> trm)

| App of (trm * trm)

λx.λy.x would be represented as Fn (fn x => Fn (fn y => x)). While this im-

plementation avoids many issues of other approaches, it is not possible to show certain

properties with this representation [11]. Manipulating terms also becomes difficult, as

binders have to be applied to access their terms. Additionally, this representation is neg-

ative, so cannot be represented in many proof assistants, which require strictly-positive

datatypes to avoid inconsistencies [14]. Theoretical issues arise from the ability to place

arbitrary host terms under binders, some of which may non-terms, so the representation

is too permissive and allows “junk terms”.

Parametric HOAS [15] removes some problems by re-introducing explicit variables,

and parameterising binders over a set of names. The approach reduces the effect of junk

terms (since only terms depending on names are expressible), and the datatype is now

strictly-positive:

datatype 'var trm =

Var of 'var

| Fn of ('var -> 'var trm)

| App of ('var trm * 'var trm)

Finally, the ideas of “nominal techniques” [12] introduced by Gabbay and Pitts are a

new approach, which retain the explicit representation of names, as in the näıve version.

The technique uses a definition of α-equivalence based on permuting names in a given

expression. I chose this approach, as it allowed a natural representation of the calculus,

without compromising usability or theoretical properties, but allowing concise arguments.

Several further techniques exist, including recent research into viewing λ-terms as

maps of occurrences of variables in a tree [16]. The area of binders is still active, with

new approaches in continuous development.

2.4 Nominal techniques

I use the following simplified presentation of the nominal idea of α-equivalence in my

project, but the theoretical background is more general. I present the simplified idea

first, then an overview of the generality of nominal techniques.

Definition. A swapping [x ↔ y] is a pair of variables x, y.

These represent changing instances of x to y and y to x within a structure, leaving

other variables unchanged.



16 CHAPTER 2. PREPARATION

var

x ∼ x

app
A ∼ C B ∼ D

(A B) ∼ (C D)

fn
[z ↔ x] ·M ∼ [z ↔ y] ·N z#M z#N

λx.M ∼ λy.N

Figure 2.2: an equivalence defined in terms of swappings

Definition. The effect of a swapping, [x ↔ y] ·M is defined as

[x ↔ y] ·M =



y M = x

x M = y

z M = z, z /∈ {x, y}
λ([x ↔ y] · z). ([x ↔ y] ·N) M = λz.N

([x ↔ y] · A) ([x ↔ y] ·B) M = (A B)

An equivalence ∼ can be defined using only this operation, as shown in Figure 2.2 —

the preconditions z#M and z#N mean that “z is fresh for M and N”. An element x is

fresh in a set S iff x /∈ S, and a variable x is fresh for a term M iff x is fresh for the free

variables of M .

It can be shown [17] that∼ is equivalent to≡α. Therefore, my approach to representing

terms-modulo-α-equivalence will be to develop a theory of swappings, then use it to show

∼ is an equivalence relation, and finally produce a new type as a quotient of the concrete

type with ∼. I also need a verified implementation of freshness.

These definitions suffice for my project. However, they are a simplification of more general

theory, presented briefly here and in more detail elsewhere [12, 18, 19].

Consider a set A of names. Then, there is another set Perm(A), which is the set of

finite permutations on A. This set forms a group: the group operator is composition,

and identity is the identity permutation ε. Each permutation has an inverse. Note here

that every permutation can be decomposed into a sequence of swappings, permutations

which only swap two variables, and hence composition is simply concatenating lists of

swappings.

The action of a permutation π on a structure x ∈ X which contains A — for instance,

the set of λ-terms using A as variables — maps X onto itself, permuting the names in x.

Definition. The action of π on X, π ·x, is a function that satisfies π1 ·π2 ·x = (π1 ◦ π2)·x,
and is x when π is the identity permutation.

Some set supp(x) of names support x: if a permutation does not change supp(x), the

permutation action will not change x. In the λ-calculus under α-equivalence, supp(x) =

fvs(x), as permuting bound variables will not change the term under α-equivalence, but

changing free variables does change x.

Definition. A set X is a nominal set if for each x ∈ X, supp(x) is finite.



2.5. ISABELLE 17

X
π−−−→ Xyf

yf

Y
π−−−→ Y

Figure 2.3: A commutative diagram showing the behaviour of an equivariant function.

Nominal sets form a category, where objects are nominal sets, and arrows are equiv-

ariant functions, functions f that satisfy

f(π · x) = π · f(x)

Each nominal set X yields another nominal set [A]X, whose inhabitants are name-

abstractions ⟨a⟩x, with an equivalence relation ∼. ⟨a⟩x ∼ ⟨b⟩y iff there is a new name c,

fresh for a, b, x, y such that [a ↔ c] · x = [b ↔ c] · y. The permutation action on [A]X is

defined to be such that π · (⟨a⟩x) = ⟨π · a⟩ (π · x). By using this definition on λ-terms,

Gabbay arrives at the definition presented in Figure 2.2.

2.5 Isabelle

Isabelle [20] is a logical framework, supporting several object logics (I use Higher-Order

Logic, the default), proof methods to remove tedious proof steps, and a human-readable

proof language, Isar [21]. Proofs are checked in Isabelle by providing any definitions one

wishes to make, then arguing theorems in this context. Since each step is checked, the

theorems must be logically correct with respect to the definitions used. There are also

other features Isabelle provides that I use in my project.

Quotient types are used heavily in my dissertation, for equivalence of permutations,

and for α-equivalence. Isabelle provides this via the quotient datatype command [22],

which takes a base type R and an equivalence relation ∼ and produces a new quotient type

Q, Abs and Rep. It also provides “lifting” and “transfer” operations to move between the

types. Type classes [23] are another feature I used, providing a way for types to conform to

an interface (for instance, all types that can be ordered might form an ordering typeclass).

I used type classes to implement freshness polymorphically.

A major advantage of Isabelle over others was the straightforward support for quotient

types. Isabelle’s rivals Agda and Coq both suffer from “setoid hell”, in which non-equality

equivalence relations must be passed around to reason about propositions involving equiv-

alence. There is no direct equivalent of quotient type, and the theory becomes some-

what involved to implement such a construct [24]. Isabelle also has excellent tooling and

a stable core, and these factors combined made it a good choice for my project.

2.6 Requirements analysis and engineering

Moving from coarse requirements to finer ones is now easier, as constraints are imposed

by the mathematics. Implementation can now be broken into the following steps:



18 CHAPTER 2. PREPARATION

1. Develop work about freshness and swappings to support later developments.

2. Define a datatype for representing simple types.

3. Define pre-terms, the raw terms of the calculus.

4. Define the effect of swappings on pre-terms.

5. Define the α-equivalence relation.

6. Show it is an equivalence relation.

7. Define a type inference algorithm on pre-terms, show invariance under α-

equivalence.

8. Produce a quotient type of terms from pre-terms under equivalence.

9. Lift required definitions and lemmas over the quotient.

10. Prove required theorems by reference to identical results on pre-terms.

11. Define a typing relation on terms.

12. Argue safety properties of this typing relation.

13. Show that the algorithm is sound and complete with respect to the typing relation.

14. Conclude that the implementation is verified, extract code.

The dependencies between steps are largely sequential, as shown in Figure 2.4, and

each step can only be “complete”, or “incomplete”, considering the boolean nature of

formal verification development. A waterfall model of development seems appropriate:

topological sorting of Figure 2.4 would suffice to follow such a model. However, Isabelle

allows admitting propositions as axioms, so to a limited extent each step can follow an

iterative model where proofs are progressively made more explicit, with fewer admitted

steps.

As far as possible, I followed software engineering good-practice. All project files were

checked into version control (git), and shared (read-only) with supervisors using a well-

known hosting website. Weekly progress meetings were observed to ensure the project

did not get off-track.

2.7 Starting point

At the start of the project, I was familiar with the theory required for implementing λ-

calculus and type theory. I was not familiar with approaches to binding described above,

or with Isabelle itself. I am pleased to say I have now learned more about these topics.



2.8. SUMMARY 19

1
4 5

2 3 7

6
8

9

13

11

10 14

12

Figure 2.4: A directed graph showing which tasks must be completed to begin others.

A → B shows that A must be complete before B may begin.

2.8 Summary

In this chapter I discussed work that took place before implementation began. I introduced

background theory, covering untyped λ-calculus (§2.1), simple types (§2.2), α-equivalence
and approaches to this problem (§2.3), and introduced nominal techniques (§2.4). I then
described the Isabelle tooling (§2.5), preparing for practical and theoretical challenges

later. Finally, I decomposed the project into steps (§2.6), and described engineering

techniques used to tackle the problem.



20 CHAPTER 2. PREPARATION



Chapter 3

Implementation

In this chapter I discuss implementation details of the project. The work is split into four

modules, what Isabelle calls theories. The first (Fresh, §3.1) deals with fresh names, the

second (Permutation, §3.2) with permutations, and the third and fourth (PreSimplyTyped,

§3.3 and SimplyTyped, §3.4) with λ-terms, before and after the quotient respectively. All

theories build upon Isabelle’s standard library, calledMain. A dependency graph is shown

in Figure 3.1. Results shown which have a corresponding theorem in the formalisation

are marked as such, like this:

Theorem 0 (example-in-isabelle). The statement of the theorem.

Proof. A proof of the theorem.

3.1 Freshness

I develop a theory of freshness, used later to obtain a fresh name for a given binder. The

implementation should accept a set of names S, and produce an element not in S. In

order to implement this interface, I used type classes [23] to make a class for types that

can produce a fresh element:

class fresh =

fixes fresh_in :: "’a set ⇒ ’a"

assumes "finite S =⇒ fresh_in S /∈ S"

Note the pre-condition of a finite S: otherwise, useful implementations such as num-

bers or strings cannot conform to this interface. To see this, consider (possibly-infinite)

sets S of natural numbers. Since S can be infinite, choose S to be N, the set of all natural
numbers. Now, if x is fresh in S, x must be a natural number. But since x /∈ S, x must

also not be a natural number, since S = N — a contradiction.

To extract executable code, there must be at least one implementation of freshness.

Unfortunately, not every implementation will suffice: for example, Isabelle allows the

Hilbert indefinite description operator ϵ inside definitions. Hilbert’s operator is a choice

21



22 CHAPTER 3. IMPLEMENTATION

Main

Fresh Permutation

PreSimplyTyped

SimplyTyped

Figure 3.1: A directed graph showing which of the theories depend on each other. A → B

shows that B depends upon results in A.

principle — the semantics of which are “assuming that there is at least one x such that

P (x), ϵx.P (x) chooses one such x (by no specific means) and returns x” — so

ϵx.x /∈ S

would be a definition of freshness if there is such an x — but this is not executable, and

code cannot be extracted from it. Natural numbers are one possible implementation: to

make a fresh natural number from a finite set S, take the largest element of the set (or

0), then add 1 to it.

instantiation nat :: fresh

begin

definition fresh_in_nat :: "nat set ⇒ nat" where

[code]: "fresh_in_nat S ≡ (if Set.is_empty S then 0 else Max S + 1)"

The code tag indicates code to be extracted later. The above also generates a proof

obligation to show the implementation satisfies the freshness specification.

Lemma 1. For any finite set S of natural numbers, the procedure given produces an n

such that n /∈ S.

Proof. S is either the empty set, or it is not. If S is empty, 0 is produced as fresh in S,

and clearly 0 /∈ S. If S is non-empty, then n′ is produced such that n′ is larger than the

largest element of S, n. Suppose for contradiction that n′ were in S. Then n′ would be

the largest element of S, not n. Hence n′ must not be in S.



3.2. SWAPPINGS AND PERMUTATIONS 23

3.2 Swappings and permutations

Finitely-supported permutations are used in the nominal definition (§2.4) of α-equivalence.
I define permutations as sequences of swappings, permuting by swapping single variables

at a time. Multiple sequences can correspond to the same permutation, so simple equality

here will not suffice: permutations are “equal” iff they have the same effect on all inputs.

This is another use for quotient types: by identifying equivalent permutations, a new type

can be made that does not make this distinction. Therefore, I define pre-permutations,

then permutations. Here, I use type synonyms for the definition of the permutation type:

type synonym ’a swp = "’a × ’a"

type synonym ’a preprm = "’a swp list"

Definition (preprm-apply). Application of pre-permutations to names, π $ x, is defined

recursively:

1. ε $ x = x

2. ((a, b) :: π′) · x = (a, b) · π′ · x, since π′ is applied first, then (a, b).

fun swp_apply :: "’a swp ⇒ ’a ⇒ ’a" where

"swp_apply (a, b) x = (if x = a then b else (if x = b then a else x))"

fun preprm_apply :: "’a preprm ⇒ ’a ⇒ ’a" where

"preprm_apply [] x = x"

| "preprm_apply (s # ss) x = swp_apply s (preprm_apply ss x)"

The defined identity element is in fact identity:

Lemma 2 (preprm-apply-id). ε satisfies ε $ x = x, for any x.

Proof. By definition of application.

In later proofs about α-equivalence, I require that x = y =⇒ π$x = π$y (which follows

from identity), its inverse, x ̸= y =⇒ π$x ̸= π$y, and the converse, π$x = π$y =⇒ x = y.

Lemma 3 (preprm-apply-unequal). If x ̸= y, then π $ x ̸= π $ y

Proof. By induction on π. The base case follows from Lemma 2. For the inductive step,

suppose x′ ̸= y′. Then [(a, b)] $ x′ ̸= [(a, b)] $ y′, by cases on x′ and y′.

Lemma 4 (preprm-apply-injective). Application of permutations π is injective.

Proof. By induction on π. The base case follows by definition. Using the inductive

hypothesis, obtain [(a, b)] $ (π′ $ x) = [(a, b)] $ (π′ $ y). Then use the contrapositive of

Lemma 3 to show that x = y using the inductive hypothesis.



24 CHAPTER 3. IMPLEMENTATION

Some operations on pre-permutations are defined on the pre-permutations, then lifted

over the equivalence relation.

Definition (preprm-compose). The composite pre-permutation π ⋄σ is σ appended to π.

Lemma 5 (preprm-apply-composition). Application of π ⋄ σ is equivalent to applying

first σ, then π.

Proof. By induction on π, both cases by definition.

Lemma 6 (preprm-unit-involution). Composition of [(a, b)] with itself is equivalent

to the identity element.

Proof. Consider whether x, the variable the permutation is applied to, is a, b, or neither.

If it is a or b, then swapping a to b, then b to a (or vice-versa) produces the same x. If it

is not, then the swapping has no effect.

Definition (preprm-inv). The inverse of a permutation π, π−1, is defined to be the

reverse of π.

definition preprm_inv :: "’a preprm ⇒ ’a preprm" where

"preprm_inv π ≡ rev π"

It can be shown that this is the inverse operation:

Lemma 7 (preprm-inv-involution). For any π and x, π−1 $π $x = x, and vice-versa,

π $ π−1 $ x = x.

Proof. By induction on π, with a trivial base case. For the inductive step, assume that

π′−1 $ π′ $ x = x and try to show

([(a, b)] ⋄ π′)
−1 $ ([(a, b)] ⋄ π′) $ x = x

Note that

([(a, b)] ⋄ π′)
−1

= π′−1 ⋄ [(a, b)]

by definition. Hence, using Lemmas 5 and 6 and the inductive hypothesis,

([(a, b)] ⋄ π′)
−1 $ (([(a, b)] ⋄ π′) $ x) =

(
π′−1 ⋄ [(a, b)]

)
$ (([(a, b)] ⋄ π′) $ x)

= π′−1 $ ([(a, b)] ⋄ [(a, b)]) $ π′ $ x

= π′−1 $ (ε) $ π′ $ x

= π′−1 $ π′ $ x

= x

as required. The alternative proposition follows from this and the fact that (π−1)
−1

= π,

given reversing a list is involutive.



3.2. SWAPPINGS AND PERMUTATIONS 25

I define an extensional equivalence relation to relate equivalent permutations.

definition

preprm_ext :: "’a preprm ⇒ ’a preprm ⇒ bool"

where

"π =p σ ≡ ∀ x. preprm_apply π x = preprm_apply σ x"

i.e. that π ≡p σ when for any x applying π and σ produces the same result. This

relation is an equivalence relation:

Lemma 8. ≡p is an equivalence relation.

Proof. Unfolding the definition of equivalence, ≡p is reflexive, symmetric, and transitive,

and hence an equivalence relation.

Several properties behave under equivalence as they would under equality.

Lemma 9 (preprm-ext-compose-left). If σ ≡p τ , then π ⋄ σ ≡p π ⋄ τ .

Lemma 10 (preprm-ext-compose-right). If σ ≡p τ , then σ ⋄ π ≡p τ ⋄ π.

Proof. Both of these follow from Lemma 5.

Lemma 11 (preprm-ext-uncompose). If π ≡p σ and π ⋄ τ ≡p σ ⋄ ρ, then τ ≡p ρ.

Proof. By assumption obtain π ⋄ τ ≡p π ⋄ ρ, then using the injectivity of permutation

application, arrive at the result.

Lemma 12 (preprm-inv-ext). If π ≡p σ, then π−1 ≡p σ
−1.

Proof. Note that (π−1)
−1 ⋄ π−1 ≡p ε and (σ−1)

−1 ⋄ σ−1 ≡p ε, using Lemma 7. Hence

π ⋄ π−1 ≡p ε, and correspondingly for σ. From these obtain π ⋄ π−1 ≡p σ ⋄ σ−1, since

≡p is an equivalence relation. Finally, derive the result by applying Lemma 11 and the

assumptions.

It is also expected that composition with an inverse produces identity.

Lemma 13 (preprm-inv-compose). For any π, π−1 ⋄ π ≡p ε.

Proof. Using Lemmas 7 and 5, this follows directly.

The preceding theory can now be lifted into an extensional context with a quotient

type.

quotient type ’a prm = "’a preprm" / preprm_ext

proof(rule equivpI)

show "reflp preprm_ext" using preprm_ext_reflp .

show "symp preprm_ext" using preprm_ext_symp .

show "transp preprm_ext" using preprm_ext_transp .

qed



26 CHAPTER 3. IMPLEMENTATION

The quotient-type construction produces an obligation to show that ≡p is an equiva-

lence (Lemma 8). All work must now be lifted into the new equivalence. Definitions are

lifted like so:

lift definition prm_id :: "’a prm" ("ε") is preprm_id

Lemmas as follows:

lemma prm_apply_injective:

shows "inj (prm_apply π)"

by(transfer, metis preprm_apply_injective)

The set of permutations over a base set S, PS form a group (PS, ◦): each element has

an inverse, and ε is the identity element. This is shown in the Isabelle source. Other

operations could be defined directly on the quotient type.

Definition (prm-set). The image of a set S under a permutation π, π {$} S, is defined

to be {π $ x | x ∈ S}.

This is the pointwise action of π on S, which allows for a permutation action on sets

of names, and hence for a notion of equivariance on the free variables of a term.

definition prm_set :: "’a prm ⇒ ’a set ⇒ ’a set" where

"prm_set π S ≡ image (prm_apply π) S"

3.3 Raw λ-terms

Simple types τ, σ, . . . and λ-terms (uppercase variables) are defined as an Isabelle datatype,

as described in §2.1. I use natural numbers for a concrete variable type as they implement

freshness, but any other type that satisfies freshness can be used.

type synonym tvar = nat

datatype type =

TVar tvar

| TArr type type

datatype ’a ptrm =

PVar ’a

| PApp "’a ptrm" "’a ptrm"

| PFn ’a type "’a ptrm"

The action of permutations on pre-terms, π •X commutes with the structure of the

term until the base case (i.e. variables or the name in a binder), so is expressed recursively.



3.3. RAW λ-TERMS 27

fun ptrm_apply_prm :: "’a prm ⇒ ’a ptrm ⇒ ’a ptrm"

"ptrm_apply_prm π (PVar x) = PVar (π $ x)"

| "ptrm_apply_prm π (PApp A B) = PApp

(ptrm_apply_prm π A)

(ptrm_apply_prm π B)"

| "ptrm_apply_prm π (PFn x T A) = PFn (π $ x) T (ptrm_apply_prm π A)"

I re-define results from §3.2 in the context of pre-terms by transcribing them. For

example, compare the following with corresponding lemmas about application of permu-

tations.

lemma ptrm_prm_apply_id:

shows "ε • X = X"

by(induction X, simp_all add: prm_apply_id)

lemma ptrm_prm_apply_compose:

shows "π • σ • X = (π ⋄ σ) • X"

by(induction X, simp_all add: prm_apply_composition)

Free variables of a term can also be defined recursively.

fun ptrm_fvs :: "’a ptrm ⇒ ’a set" where

"ptrm_fvs (PVar x) = {x}"

| "ptrm_fvs (PApp A B) = ptrm_fvs A ∪ ptrm_fvs B"

| "ptrm_fvs (PFn x _ A) = ptrm_fvs A - {x}"

Later, a set of names is frequently required to be finite, so that a fresh name can be

generated. To aid this, I show that the free variables of a pre-term is always a finite set.

Lemma 14 (ptrm-fvs-finite). The free variables of X form a finite set.

Proof. By induction on X.

This operation can also be shown equivariant using pointwise action, a property used

later when working with the α-equivalence of λ-terms:

Lemma 15 (ptrm-prm-fvs). The free variables of π •X are the image of π in the free

variables of X.

Proof. By induction on X.

1. For a variable x, note that π • x = π $ x. Then the proposition follows directly.



28 CHAPTER 3. IMPLEMENTATION

2. Assume that fvs (π • A) = π {$} fvs(A), and similarly for B. Then the lemma holds

for (A B):

fvs (π • (A B)) = fvs ((π • A) (π •B))

= fvs (π • A) ∪ fvs (π • A)
= π {$} fvs(A) ∪ π {$} fvs(B)

= π {$} (fvs(A) ∪ fvs(B))

= π {$} fvs (A B)

3. Assume that fvs (π • A) = π {$} fvs(A). Then finish as in the application case:

fvs (π • λ (x : T ) .A) = fvs (λ (π $ x : T ) . (π • A))
= fvs (π • A)− (π $ x)

= π {$} fvs(A)− (π $ x)

= π {$} (fvs(A)− x)

= π {$} (fvs (λ(x : T ).A))

Isabelle generates a function called size with every datatype which reports the number

of nodes in a given instance — this corresponds to the formal definition of term size |M |
described in §4.3. To use the size of a term (e.g. for induction), it is useful to show that

size is equivariant, that |π •M | = π · |M | = |M |.

Lemma 16 (ptrm-size-prm). The size of a pre-term X is the same as the size of X

under a permutation, π •X.

Proof. By induction on the structure of X, then by definition of permutation application.

3.3.1 α-equivalence

Isabelle provides inductive definitions, so the nominal definition of α-equivalence intro-

duced in §2 is straightforward. I used a slightly different formulation in which there are

two cases for functions: one where the swapping variables are the same, and one when

they are not. This is equivalent, but makes for a shorter proof script.

inductive

ptrm_alpha_equiv :: "’a ptrm ⇒ ’a ptrm ⇒ bool"

where

var: "(PVar x) ≈ (PVar x)"

| app: " [[A ≈ B; C ≈ D ]] =⇒ (PApp A C) ≈ (PApp B D)"

| fn1: "A ≈ B =⇒ (PFn x T A) ≈ (PFn x T B)"

| fn2: " [[a ̸= b; A ≈ [a ↔ b] • B; a /∈ ptrm_fvs B ]]

=⇒ (PFn a T A) ≈ (PFn b T B)"



3.3. RAW λ-TERMS 29

However, Isabelle does not provide eliminators by default, and these must be added

manually. Eliminators provide reasoning to “go backwards” from an inductive predicate,

obtaining conditions which cause the truth of the predicate. If (A C) ∼ (B D), the only

conclusion possible from the definition of ∼ is that A ∼ B and C ∼ D.

inductive cases varE: "PVar x ≈ Y"

inductive cases appE: "PApp A B ≈ Y"

inductive cases fnE: "PFn x T A ≈ Y"

These provide this style of reasoning, bound to labels as a theorem. For instance varE

is effectively

lemma varE

fixes P

assumes "PVar x ≈ Y"

assumes "Y = PVar x =⇒ P"

shows "P"

proof

...

qed

A test of this relation is to show that free variables and permutation application are

preserved under it, a property of α-equivalence.

Lemma 17 (ptrm-alpha-equiv-fvs). Assume X ∼ Y . Then fvs(X) = fvs(Y ).

Proof. By induction on the derivation of X ∼ Y . var, app, and fn1 are easy. For fn2,

assume:

• a ̸= b

• A ∼ [a ↔ b] •B

• a /∈ fvs(B)

• the induction hypothesis, fvs(A) = fvs ([a ↔ b] •B)

Then, try and show fvs (λ(a : T ).A) = fvs (λ(b : T ).B).

fvs (λ(a : T ).A) = fvs(A)− a

= fvs ([a ↔ b] •B)− a

= ([a ↔ b] {$} fvs(B))− a

Now the proof is stuck — the proof will follow from arriving at the term fvs(B)− b, but

simplifying will not arrive there. Consider whether b is in the free variables of B. If it is,

then [a ↔ b] {$} fvs(B) = fvs(B)− b ∪ a, since a /∈ fvs(B), so

([a ↔ b] {$} fvs(B))− a = fvs(B)− b ∪ a− a

= fvs(B)− b



30 CHAPTER 3. IMPLEMENTATION

If it is not, then [a ↔ b] has no effect, so

([a ↔ b] {$} fvs(B))− a = fvs(B)− a

= fvs(B) = fvs(B)− b

Now

fvs (λ(a : T ).A) = fvs(B)− b

= fvs (λ(b : T ).B)

Lemma 18 (ptrm-alpha-equiv-prm). Assume X ∼ Y . Then π•X ∼ π•Y . This shows

that α-equivalence is respected by permuting variable names.

Proof. By induction on the derivation of X ∼ Y . Again var, app, and fn1 turn out to

be easy. For fn2, assume as usual that a ̸= b, a /∈ fvs(B), and the induction hypothesis

π •A ∼ π • [a ↔ b]•B. Then, deduce from these the preconditions for λ(π $a : T ).π •A ∼
λ(π $ b : T ).π •B, namely that

• π • a ̸= π • b

• π $ a /∈ fvs (π •B)

• π • A ∼ [π $ a ↔ π $ b] • π •B

Finally, see that both sides of the equivalence can be simplified to produce the result.

I show that ∼ is an equivalence relation. Some specific results are needed first, which

are presented informally:

Lemma 19 (ptrm-swp-transfer). [a ↔ b] •X ∼ Y is equivalent to X ∼ [a ↔ b] • Y .

Proof. This is shown in both directions by permuting both sides by [a ↔ b], then using

the fact that [a ↔ b] ⋄ [a ↔ b] = ε.

Lemma 20 (ptrm-alpha-equiv-fvs-transfer). If a /∈ fvs(B), and A ∼ [a ↔ b] • B,

then b /∈ fvs(A).

Proof. By a similar argument.

These are used to argue reflexivity, symmetry, and transitivity.

Lemma 21 (ptrm-alpha-equiv-reflexive). ∼ is reflexive: that is, for all terms X,

X ∼ X.

Proof. By induction on the structure of X.

Lemma 22 (ptrm-alpha-equiv-symmetric). ∼ is symmetric, so for all terms X, Y ,

X ∼ Y =⇒ Y ∼ X.



3.3. RAW λ-TERMS 31

Proof. By induction on the derivation of X ∼ Y . As usual, fn2 is the difficult case. It is

given from the induction process that a ̸= b, A ∼ [a ↔ b]•B, a /∈ fvs(B), and the inductive

hypothesis, [a ↔ b] • B ∼ A. From these and Lemmas 19 and 20, deduce that b ̸= a,

B ∼ [b ↔ a] • A, and b /∈ fvs(A). These are the conditions for λ(b : T ).B ∼ λ(a : T ).A,

which is the required result.

Lemma 23 (ptrm-alpha-equiv-transitive). ∼ is transitive. If X ∼ Y and Y ∼ Z,

then X ∼ Z.

Proof. By induction on the size of X, then by cases on X. This generates the inductive

hypothesis

∀KY Z. (|K| < |X|, K ∼ Y, Y ∼ Z) =⇒ K ∼ Z

If X is a variable, the result follows by deducing that Y and Z must also be variables

(using the eliminators defined earlier), and that they must all be the same variable. If

X is instead an application, the inductive hypothesis can be used to show that both

components of the application in X and Z are equivalent, and hence that X ∼ Z by

definition of ∼.

Finally, if X is an abstraction, there are four cases to consider, depending on whether

fn1 or fn2 is used to get from X to Y , and again from Y to Z. The difficult case is when

both relations are produced by fn2. This case can be further broken down when X and

Z use the same variable in their binder — suppose X = λ(x : T ).A, Y = λ(y : T ).B, and

Z = λ(z : T ).C, then either x = z or x ̸= z. If x = z, then A ∼ C; since A ∼ [x ↔ y] •B
and B ∼ [y ↔ x] • C, A ∼ [x ↔ y] • [y ↔ x] • C, so A ∼ C since the swappings cancel

out.

However, if x ̸= z, X ∼ Z has to be shown by fn2. Since both derivations were by fn2,

A ∼ [x ↔ y] • [y ↔ z] •C, but since x, y, and z are all now distinct it is possible to show

(by definition of permutations) that [x ↔ y] ⋄ [y ↔ z] = [x ↔ z], so A ∼ [x ↔ z] • C.

Also, x /∈ fvs(C) holds by noting that x /∈ fvs([y ↔ z] •C), then considering if z is in the

free variables of C. If it is, then x /∈ fvs(C), since x ̸= y ̸= z and hence swapping z for y

has no effect on whether x is in the free variables of the term or not. If it is not, then the

swapping has no effect, so x /∈ fvs(C) trivially. Concluding, x ̸= z, A ∼ [x ↔ z] • C, and

x /∈ fvs(C), so it follows that λ(x : T ).A ∼ λ(z : T ).C.

Theorem 1. ∼ is an equivalence relation.

Proof. Since ∼ is reflexive, symmetric, and transitive, it is an equivalence relation.

3.3.2 Type inference algorithm

I implement a type inference algorithm on the concrete syntax, which can then be lifted

to terms. The algorithm uses typing contexts, which are modelled as partial (i.e. total,

but returning an option type) functions from names to types.



32 CHAPTER 3. IMPLEMENTATION

type synonym ’a typing_ctx = "’a ⇀ type"

fun ptrm_infer_type :: "’a typing_ctx ⇒ ’a ptrm ⇒ type option" where

"ptrm_infer_type Γ (PVar x) = Γ x"

| "ptrm_infer_type Γ (PApp A B) =

(case (ptrm_infer_type Γ A, ptrm_infer_type Γ B) of

(Some (TArr τ σ), Some τ’) ⇒ (if τ = τ’ then Some σ else None)

| _ ⇒ None)"

| "ptrm_infer_type Γ (PFn x τ A) =

(case ptrm_infer_type (Γ(x 7→ τ)) A of

Some σ ⇒ Some (TArr τ σ)

| None ⇒ None)"

To lift this definition, I show that it is invariant under α-equivalence. This is done

with a lemma about swapping names in a typing context.

Lemma 24 (ptrm-infer-type-swp). Assume two names a and b are distinct, and b /∈
fvs(X). Then

infer (Γ{a 7→ τ}, X) = infer (Γ{b 7→ τ}, [a ↔ b] •X)

Proof. By induction on the structure of X.

Theorem 2 (ptrm-infer-type-alpha-equiv). The inference algorithm is invariant un-

der equivalence. If X ∼ Y , then for any context Γ,

infer (Γ, X) = infer (Γ, Y )

Proof. By induction on the derivation of X ∼ Y . All cases other than fn2 follow immedi-

ately by definition. For fn2, use the definition of the type inference algorithm and Lemma

24 to show that the function bodies have the same type σ, then note that both X and Y

then have inferred type τ → σ.

3.4 λ-terms with α-equivalence

As before with permutations, pre-terms are lifted to terms using the quotient-type ma-

chinery.

quotient type ’a trm = "’a ptrm" / ptrm_alpha_equiv

proof(rule equivpI)

show "reflp ptrm_alpha_equiv" using ptrm_alpha_equiv_reflp .

show "symp ptrm_alpha_equiv" using ptrm_alpha_equiv_symp .

show "transp ptrm_alpha_equiv" using ptrm_alpha_equiv_transp .

qed

There is extra boilerplate required by the quotient, as equality rules don’t necessarily

hold. First, every lifted constructor has to be shown to be not equal to every other

constructor, of which the following is an indicative example.



3.4. λ-TERMS WITH α-EQUIVALENCE 33

lemma var_not_app:

shows "Var x ̸= App A B"

proof(transfer)

...

qed

Then, the “obvious” injective conclusions from equality don’t necessarily hold either,

and must be shown manually. For example, suppose (A B) = (C D). Conclude that

A = C and B = D from this, but with the quotient type Isabelle cannot generate the

result and it has to be shown manually. Isabelle does not generate an induction principle

for the new terms automatically, but I produce one by deferring to the concrete induction

principle.

Lemma 25 (trm-induct). Suppose P is a unary predicate on terms, and that for vari-

ables x, P (x) holds, if P (A) and P (B) hold, then P (A B) also holds, and finally that if

P (A) holds, then P (λ(x : T ).A) also holds. Then, for any M , P (M).

Proof. Transfer the hypotheses to work on the concrete level, then show P (Abs(X)) by

using the pre-term induction principle. The lemma then follows by lifting this result.

Similar principles are shown for case-analysis and induction on the size of a term.

Strong induction allows assuming that x in a binder is fresh for a given set S, which makes

many proofs simpler and shorter — a formalised version of Barendregt’s convention.

Lemma 26 (trm-strong-induct). Suppose now that P is a binary predicate on pairs

consisting of a set of names and a term. The term is the object of induction, and S is a

set of names to avoid when discussing binders. Suppose that

1. S is a finite set of names.

2. P (S, x), for any variable x.

3. If P (S,A) and P (S,B), then P (S, (A B)).

4. If x /∈ S and P (S,A), then P (S, (λ(x : T ).A)).

Now for any term M , P (S,M).

Proof. First, show a more general property: that for any permutation π, P (S, π ·M).

This is argued by induction on M , using the simple induction rule proved earlier. The

variable and application cases are by analogy with the simple induction, but the function

binder needs special attention. In the binding case, assume that P (S, π · A) for any π,

and show that P (S, π · λ(x : T ).A). To prove this, produce a new variable y (using the

freshness implementation) that is fresh with respect to the union of S, the free variables of

π ·A, and π $z. Now for any B, if P (S,B), then P (S, λ(y : T ).B), using the assumptions

— in particular, P (S, λ(y : T ). ([y ↔ π $ x] ⋄ π) · A).



34 CHAPTER 3. IMPLEMENTATION

However, by using the fn2 rule, it can be shown that

λ(y : T ). ([y ↔ π $ x] ⋄ π) · A = λ(π $ x : T ).π · A
= π · λ(x : T ).A

And so P (S, π · λ(x : T ).A) holds for any π. Now that the stronger result is established,

the original result can be shown by setting π = ε.

Further induction principles can be produced by combining the strong induction prin-

ciple with proof by cases (“strong cases”) and proof by induction on the size of a term

(“strong depth induction”). Both follow immediately from the strong induction principle.

Lemma 27 (trm-strong-cases). Suppose P and S are defined as in Lemma 26, but

now consider a term M and suppose

1. S is a finite set of names.

2. If M = x, or M = (A B), then P (S,M).

3. If M = λ (x : T ) .A and x /∈ S, then P (S,M).

Then for any S and M , P (S,M).

Lemma 28 (trm-strong-depth-induct). Suppose P and S are defined as above. Now,

assume

1. S is a finite set of names.

2. P (S, x) holds for all x.

3. If P (S,K) holds for all K smaller than (A B), P (S, (A B)).

4. If P (S,K) holds for all K smaller than λ (x : T ) .A, and x /∈ S, P (S, λ (x : T ) .A).

Then for any S and M , P (S,M).

3.4.1 Typing judgements

An explicit typing relation is defined to ensure type inference is correct with respect to

the relation. Additionally, it is easier to argue that inductive definitions respect certain

properties (e.g. preservation), then show that the algorithm is correct, than it is to argue

directly about the algorithm. The judgements presented in §2.2 are encoded in Isabelle:

inductive typing :: "’a typing_ctx ⇒ ’a trm ⇒ type ⇒ bool" where

tvar: "Γ x = Some τ =⇒ Γ ⊢ Var x : τ"

| tapp: " [[Γ ⊢ f : (TArr τ σ); Γ ⊢ x : τ ]] =⇒ Γ ⊢ App f x : σ"

| tfn: "Γ(x 7→ τ) ⊢ A : σ =⇒ Γ ⊢ Fn x τ A : (TArr τ σ)"



3.4. λ-TERMS WITH α-EQUIVALENCE 35

The usual eliminators then need to be proved manually, as the quotient type adds

complexity that Isabelle’s inductive-cases command cannot currently process. For exam-

ple,

lemma typing_appE:

assumes "Γ ⊢ App A B : σ"

shows "∃ τ. (Γ ⊢ A : (TArr τ σ)) ∧ (Γ ⊢ B : τ)"

provides a mechanism for reasoning about the typing judgement of an application in

reverse. With these eliminators, I show the first property of the type system: weakening.

Theorem 3 (typing-weaken). Assume that Γ ⊢ M : τ , and pick y such that y /∈ fvs(M).

Then

Γ{y 7→ σ} ⊢ M : τ

for any σ — weakening the context with another variable y derives the same type, providing

that y is fresh.

Proof. By induction on the derivation of the typing judgement. tvar and tapp follow

directly, but the presence of a binder in tfn complicates matters. By assumption, note

y /∈ fvs (λ(x : τ).A), so either y = x or y /∈ fvs(A). In the first case, adding the x 7→ τ to

the context overwrites the weakened context. For the second, y /∈ fvs(A) can be combined

with the induction hypothesis to show the result.

3.4.2 Substitution and β-reduction

Some theorems about the type system of the calculus require β-reduction, which itself

requires substitution to be defined first. I define a substitution relation inductively, then

show that the relation is a function, then define β-reduction in terms of it. While it is

possible to define substitution as a function directly, it has to be defined on pre-terms, then

lifted, as Isabelle’s function package does not support defining functions on equivalence

classes.

inductive substitutes :: "’a trm ⇒ ’a ⇒ ’a trm ⇒ ’a trm ⇒ bool"

where

var1: "x = y =⇒ substitutes (Var x) y M M"

| var2: "x ̸= y =⇒ substitutes (Var x) y M (Var x)"

| app: " [[substitutes A x M A’; substitutes B x M B’ ]]

=⇒ substitutes (App A B) x M (App A’ B’)"

| fn: " [[x ̸= y; y /∈ fvs M; substitutes A x M A’ ]]

=⇒ substitutes (Fn y T A) x M (Fn y T A’)"

If a relation R is a function, it is both total and single-valued, so that R satisfies

∀a.∃b.R(a, b)

and

∀a, b, c.R(a, b) ∧R(a, c) =⇒ b = c



36 CHAPTER 3. IMPLEMENTATION

Lemma 29 (substitutes-total). The substitution relation is total: for any term A,

there is an A′ which is the substitution of x for M in A.

Proof. By strong induction on A, avoiding both x and the free variables of M . For the

variable case, consider whether the variable is equal to x or not, and use either the var1

or var2 rules accordingly. Applications follow from the induction hypotheses. Finally, for

functions λ(y : T ).B, note that y ̸= x and y /∈ fvs(M), by the strong induction hypothesis.

Hence the fn rule applies.

Lemma 30 (substitutes-unique). The substitution relation is unique: if B and C are

both substitutions of x for M in A, then B = C.

Proof. By strong induction on A, avoiding x and fvs(M), then directly using eliminators.

Lemma 31 (substitutes-function). Substitution is a function.

Proof. Using Lemmas 30 and 29, by definition.

Isabelle can produce a function from this result and the relation. This is done using the

definition description operator ι, which Isabelle calls “THE” — this is like the indefinite

description operator, but returns the only such item. Then, a series of simplification

lemmas are provided to allow reasoning about the function. While substitution is an

executable algorithm, this definition is not exexecutable as there is no direct definition. It

may be possible to use Isabelle’s code transformation with added user-defined properties

to allow an extracted implementation (discussed later), but this is left as an extension.

definition subst :: "’a trm ⇒ ’a ⇒ ’a trm ⇒ ’a trm" ("_[_ ::= _]")

where

"subst A x M ≡ (THE X. substitutes A x M X)"

I showcase the strength of the strong induction principle (and hence the whole nom-

inal approach) by showing Barendregt’s substitution lemma [7], which allows re-writing

substitutions in a different order. It is used to show the confluence property.

Lemma 32 (barendregt). Assume that y ̸= z, and that y /∈ fvs(L). Then

M [y := N ][z := L] = M [z := L][y := N [z := L]]

Proof. By strong induction on M , avoiding y, z, and the free variables of N and L.

Normally, the proof proceeds by induction on M , deals easily with the variable and

application cases, then becomes concerned with details of name clashing in the binder

case. Consider M = λx.A. At this point, substitution cannot necessarily be simplified

as it may not be capture-avoiding. However, using the strong induction principle, it is

provided that x ̸= y, x ̸= z, and x is fresh for both N and L. Therefore, the proof follows

by simplification directly:

(λx.A) [y := N ][z := L] = λx. (A[y := N ][z := L])

= λx. (A[z := L][y := N [z := L]])

= (λx.A) [z := L][y := N [z := L]]



3.4. λ-TERMS WITH α-EQUIVALENCE 37

It can be seen here that by avoiding the names, and hence the problem, the proof is much

simpler and the binder case follows directly.

I show a result about the effect of substitution on typing, which is used while con-

tracting a β-redex in the proof of type-preservation. This lemma also exercises the strong

depth-induction principle, combining avoiding name conflicts in the proof and also assum-

ing that the result holds for any term smaller than the term currently under consideration.

Lemma 33 (typing-subst). Assume that Γ ⊢ N : τ , and also that Γ{z 7→ τ} ⊢ M : σ.

Then Γ ⊢ M [z := N ] : σ.

Proof. By strong induction on the size of M , avoiding z and fvs(N). The case of variables

x follows by considering x = z, and the application case follows from the inductive

hypothesis. For binders, the weakening result about the type system can be used to show

that Γ{x 7→ T} ⊢ N : τ . By assumption, Γ{z 7→ τ} ⊢ λ(x : T ).A : σ, and hence there is

a type σ′ such that σ = T → σ′, and

Γ{z 7→ τ, x 7→ T} ⊢ A : σ′

Hence by the inductive hypotheses, Γ{x 7→ T} ⊢ A[z := N ] : σ′, then

Γ ⊢ λ(x : T ).A[z := N ] : σ

The result follows by simplification.

I used substitution to define single-step β-reduction:

inductive beta_reduction :: "’a trm ⇒ ’a trm ⇒ bool" where

beta: "(App (Fn x T A) M) →β (A[x ::= M])"

| app1: "A →β A’ =⇒ (App A B) →β (App A’ B)"

| app2: "B →β B’ =⇒ (App A B) →β (App A B’)"

| fn: "A →β A’ =⇒ (Fn x T A) →β (Fn x T A’)"

I show that types are preserved under single-step reduction, aiming towards the subject

reduction property.

Lemma 34 (preservation’). Assume that Γ ⊢ M : τ , and that M →β M ′. Then

Γ ⊢ M ′ : τ .

Proof. Induction on the derivation of Γ ⊢ M : τ . There are no possible beta-reductions

for variables, and only one for functions. However, there are three possible ways an

application can reduce: the left-hand case, the right-hand case, or the redex case. By

considering these three cases and using the inductive hypotheses (Lemma 33 for the redex

case), the result follows immediately in every case.



38 CHAPTER 3. IMPLEMENTATION

3.4.3 Normal forms and the progress property

I define a normal-form predicate, then use it to show the progress property, a safety

theorem of the type system originally presented by Milner [8], which captures the idea

that well-typed terms cannot get “stuck”: they are either normalised, or may be reduced

further.

inductive NF :: "’a trm ⇒ bool" where

var: "NF (Var x)"

| app: " [[A ̸= Fn x T A’; NF A; NF B ]] =⇒ NF (App A B)"

| fn: "NF A =⇒ NF (Fn x T A)"

Theorem 4 (progress). Assume Γ ⊢ M : τ . Then M is either in normal form, or there

is an M ′ such that M →β M ′.

Proof. By induction on M . Variables are always in normal form, and the binder case

follows directly from the induction hypothesis. In the application case, if either of the

application’s subterms can reduce, then the application can reduce. Alternatively, if the

application forms a redex, it can also reduce. However, if none of these conditions hold,

then it is in normal form, so the result holds.

3.4.4 Many-step reduction

Many-step reduction is the reflexive, transitive closure of single-step reduction.

inductive beta_reduces :: "’a trm ⇒ ’a trm ⇒ bool" where

reflexive: "M →β∗ M"

| transitive: " [[M →β∗ M’; M’ →β M’’ ]] =⇒ M →β∗ M’’"

I prove the subject-reduction and safety properties, using Lemma 34 and the progress

property shown in Theorem 4.

Theorem 5 (preservation). Assume that Γ ⊢ M : τ , and that M →∗
β M ′. Then

Γ ⊢ M ′ : τ .

Proof. By induction on the reduction M →∗
β M ′. The reflexive case follows immediately,

and the transitive case from the induction hypothesis and Lemma 34.

Theorem 6 (safety). Assume again that M is well-typed and M reduces in many steps

to M ′. Then M is either in normal form, or there is an M ′′ such that M ′ reduces to M ′′

in exactly one step.

Proof. By induction on the many-step reduction. In the reflexive case, the results follows

immediately from the progress property. For the transitive case, show that all terms in the

transitive relation remain well-typed using the subject-reduction property. Then apply

the progress property.

I am now finished with the properties I stated in my project proposal. What remains

is to show that the inference algorithm is correct with respect to the typing judgements,

and hence that the type inference algorithm also has these properties.



3.5. EXTENSIONS 39

3.4.5 Inference correctness

To show that the inference algorithm is correct, it has to be both sound and complete.

The algorithm is sound if for any inference it makes, the same judgement can be made in

the typing rules. Conversely, the algorithm is complete if for any judgement that can be

made through the typing rules, it can also infer the same type.

Lemma 35 (infer-sound). Assume that infer (Γ,M) = τ . Then Γ ⊢ M : τ .

Proof. By induction on M . In each case, consider the pre-conditions required for the

algorithm to produce τ , then use these to argue that Γ ⊢ M : τ . For example, if M = x,

M has an inferred type iff x ∈ dom(Γ). But then the typing rule for variables can also

deduce this type, so the result holds for variables. Other cases are similar.

Lemma 36 (infer-complete). Assume that Γ ⊢ M : τ . Then infer (Γ,M) = τ .

Proof. By induction on the typing derivation. All cases then follow by using the inductive

hypothesis and the simplification rules for inference.

Theorem 7 (infer-valid). The type inference algorithm is correct.

Proof. Since it is sound and complete, the algorithm is correct, at least by reference to

the typing relation.

3.5 Extensions

3.5.1 Unit and pair terms

I added the unit value and pairs to the project, with suitable extensions to the type system.

To do this, I extended the term datatype to include a unit value, a pair constructor, and

projection functions for either side of a pair.

datatype ’a ptrm =

PUnit

| PVar ’a

| PApp "’a ptrm" "’a ptrm"

| PFn ’a type "’a ptrm"

| PPair "’a ptrm" "’a ptrm"

| PFst "’a ptrm"

| PSnd "’a ptrm"

The definition of types was updated to include unit and pair types.

datatype type =

TUnit

| TVar tvar

| TArr type type

| TPair type type



40 CHAPTER 3. IMPLEMENTATION

The main task for this extension was updating all the lemmas and definitions to include

the new constructions. In general this was easier than writing the project over again as the

semantics for the new constructions are simpler than the application and binder terms.

The most interesting adaptation was new typing rules, which notably required that a

projection function was only well-typed if applied to a term that was a pair type.

One major problem this extension highlighted with the approach I took with the

project was the trivia that had to be written to determine that any datatype constructor

was not equal to a distinct datatype constructor: for example, no pair is equal to a binder.

3.5.2 Confluence

I showed the confluence property. The confluence property for a reduction system such

as this one states that “if A reduces in many steps to B and also to C, then there is a

D such that B and C both reduce in many steps to D”. There are several techniques

to show this property. I took the approach taken by Takahashi [25] in his work on the

λ-calculus which defines two new reduction relations, parallel reduction and complete

development. I followed Pollack’s overview [26] of the technique for a simple untyped

calculus and extended it to my calculus.

First, I define parallel reduction (written A ≫ B). Intuitively, this relation is β-

reduction, but at any step where reductions on subterms as well as the main term is

possible, it performs all at once.

inductive parallel_reduction :: "’a trm ⇒ ’a trm ⇒ bool" where

refl: "A >> A"

| beta: " [[A >> A’; B >> B’ ]] =⇒ (App (Fn x T A) B) >> (A’[x ::= B’])"

| eta: "A >> A’ =⇒ (Fn x T A) >> (Fn x T A’)"

| app: " [[A >> A’; B >> B’ ]] =⇒ (App A B) >> (App A’ B’)"

| pair: " [[A >> A’; B >> B’ ]] =⇒ (Pair A B) >> (Pair A’ B’)"

| fst1: "P >> P’ =⇒ (Fst P) >> (Fst P’)"

| fst2: "A >> A’ =⇒ (Fst (Pair A B)) >> A’"

| snd1: "P >> P’ =⇒ (Snd P) >> (Snd P’)"

| snd2: "B >> B’ =⇒ (Snd (Pair A B)) >> B’"

Where the relation needed extending, I kept with this intuition and reduce sub-terms

in rules wherever possible — note fst2 and snd2.

Next, the complete development relation (written A ≫ B) is similar to parallel

reduction, but written in such a way as to remove any ambiguity as to which rule applies.

Consider that A ≫ A′, by some rule. However, it can also reduce by refl to itself: complete

developments remove this ambiguity.



3.5. EXTENSIONS 41

inductive complete_development :: "’a trm ⇒ ’a trm ⇒ bool" where

unit: "Unit >>> Unit"

| var: "(Var x) >>> (Var x)"

| beta: " [[A >>> A’; B >>> B’ ]] =⇒ (App (Fn x T A) B) >>> (A’[x ::= B’])"

| eta: "A >>> A’ =⇒ (Fn x T A) >>> (Fn x T A’)"

| app: " [[A >>> A’; B >>> B’; (
∧
x T M. A ̸= Fn x T M) ]]

=⇒ (App A B) >>> (App A’ B’)"

| pair: " [[A >>> A’; B >>> B’ ]] =⇒ (Pair A B) >>> (Pair A’ B’)"

| fst1: " [[P >>> P’; (
∧
A B. P ̸= Pair A B) ]] =⇒ (Fst P) >>> (Fst P’)"

| fst2: "A >>> A’ =⇒ (Fst (Pair A B)) >>> A’"

| snd1: " [[P >>> P’; (
∧
A B. P ̸= Pair A B) ]] =⇒ (Snd P) >>> (Snd P’)"

| snd2: "B >>> B’ =⇒ (Snd (Pair A B)) >>> B’"

It is always the case that a term can be reduced by the complete development relation;

this holds by refl for parallel reduction, but is also true for complete developments.

Lemma 37 (complete-development-exists). For any term A, there is an A′ such that

A ≫ A′.

Proof. By induction on the structure of A. In each case, choose a rule based on the

structure, then obtain A′ by means of that rule and the induction hypothesis.

To show the confluence property, I need the diamond property for parallel reduction,

an auxiliary lemma is required first about decomposing a complete development into two

parallel reductions.

Lemma 38 (complete-development-triangle). Suppose A ≫ D and A ≫ B. Then

B ≫ D.

Proof. By induction on the derivation of A ≫ D. For each case, consider how A might

have reduced under parallel reduction to B, obtain a value for B, then show that B ≫ D

by any relevant rule.

It can now be shown that parallel reduction has the diamond property: that diverging

reductions can always be re-united by another step.

Lemma 39 (parallel-reduction-diamond). Assume that A ≫ B and A ≫ C. Then

there is a D such that B ≫ D and C ≫ D.

Proof. Obtain a D such that A ≫ D, since this always exists. Hence by the previous

lemma, both B ≫ D and C ≫ D. Thus the diamond property holds for (≫).

I define (≫∗) as the reflexive-transitive closure of (≫). It is shown by a diagram

chase (Figure 3.2) that (≫∗) has the diamond property, so what remains is to show that

(≫∗) =
(
→∗

β

)
. This is done by exhibiting a bidirectional conversion:

Lemma 40 (parallel-reduction-is-beta-reduction). If A ≫ B, then A →∗
β B.

Proof. By induction on the derivation of A ≫ B. Each case can be converted straight-

forwardly to zero or more β-reductions.



42 CHAPTER 3. IMPLEMENTATION

A00
≫−−−→ A10

≫−−−→ A20
≫−−−→ . . .y≫

y≫
y≫

A01
≫−−−→ A11

≫−−−→ A21
≫−−−→ . . .y≫

y≫
y≫

A02
≫−−−→ A12

≫−−−→ A22
≫−−−→ . . .y≫

y≫
y≫

. . . . . . . . .

Figure 3.2: The diamond property of (≫∗) can be shown using the diamond property of

(≫) by induction on the (conceptual) rows of this commutative diagram, then by another

induction on the columns.

Lemma 41 (beta-reduction-is-parallel-reduction). If A →β B, then A ≫ B.

Proof. By induction on the derivation of the β-reduction. Each case forms part of the

corresponding parallel reduction, and refl allows reducing subterms that the β-reduction

does not reduce.

Lemma 42 (parallel-reduction-beta-reduces-equivalent).
(
→∗

β

)
and (≫∗) are

equivalent.

Proof. Directly from the previous pair of lemmas.

The confluence property follows from this and the diamond property of the closure of

parallel reduction.

Theorem 8 (confluence). Suppose A →∗
β B and A →∗

β C. Then there exists a D such

that B →∗
β D and C →∗

β D.

Proof. By assumption, A ≫∗ B and A ≫∗ C, since the two relations are equivalent by

Lemma 42. Then obtain aD such that B ≫∗ D and C ≫∗ D, using the diamond property

of (≫∗). Finally, note that B →∗
β D and C →∗

β D, again using the equivalence.

3.6 Summary

In this chapter I implemented the formal parts of my project. I provided implementations

of freshness (§3.1) and permutations (§3.2) to use for subsequent stages in the project.

Then, I used these to define operations on concrete λ-terms (§3.3), and produced a new

term, quotiented by α-equivalence (§3.4), and typing judgements on these terms. I then

implemented a type inference algorithm (§3.3.2), lifted it to the quotient terms, and proved

it correct. I also added some extensions to the original task, namely unit and pair types

(§3.5.1), and a proof of confluence (§3.5.2).



Chapter 4

Evaluation

While my implementation is verified, there are several places in which it can still fail. The

project as a whole rests on the correctness of Isabelle’s logical kernel, and on the correct-

ness of its code extraction mechanism. If either of these (although the code extraction

mechanism is far more likely) were to be shown incorrect, my project is also potentially

incorrect. In addition, the definitions encoded within Isabelle may not be definitions that

match the conventional definitions — they could be technically incorrect, surprising, or

vacuous. However, there are other metrics to the project’s success other than its relative

truth:

• Practical examples: while the implementation is theoretically correct with respect to

a set of definitions, these definitions must correspond to an intuitive understanding

of what the implementation should do. Therefore, manually-written tests should

check the expected properties of the calculus to avoid vacuous or controversial def-

initions.

• Performance: extracted algorithms should perform well, at least asymptotically.

It is difficult to argue this directly in a proof assistant, so it is easier to produce

empirical data and show that statistically the algorithm works as expected.

• Comparison to other work: there is existing academic work in this general area, and

comparisons must be drawn to highlight successes and failures in my approach. The

choice of representation especially in the project is somewhat unusual, and comes

with advantages and disadvantages compared to other approaches.

The majority of the practical evaluation was directed at the extracted type inference

algorithm, but there is also some testing of freshened variables and the representation of

the calculus itself.

4.1 Framework for evaluation

Isabelle supports four programming languages in its code-extraction machinery [27]: Stan-

dard ML, OCaml, Haskell, and Scala. Haskell was the chosen language for evaluating

the type inference algorithm: it offered better library and runtime support for testing

43



44 CHAPTER 4. EVALUATION

and benchmarking than Standard ML and OCaml, but remained closer to the algorithm

expressed in Isabelle than Scala (which has a more complex type system, and is object-

oriented). To build and evaluate the extracted code, I used Stack [28], a tool for Haskell

that provides sandboxing, compiler and package isolation, build systems, and support

for running tests and benchmarks, in combination with GHC [29], the de facto standard

Haskell compiler.

Isabelle’s code extraction mechanism immediately produced correct code that resem-

bled the formalisation very well without further tweaking, but there were several problems

that needed to be fixed without touching (and thereby invalidating) the extracted code. I

added a new module Utils to the extracted code which provided some utilities for testing

and benchmarking and fixed the problems:

• The extracted code initially wouldn’t compile, as it produced invalid Haskell type

signatures that are neither Haskell ’98 nor Haskell 2010. The type signatures added

explicit universal quantification to type variables, where usually the compiler would

infer that all type variables were implicitly universally quantified. For example, the

polymorphic identity function in standard Haskell

id :: a -> a

id x = x

became

id :: forall a. a -> a

id x = x

However, this could be made to build using the ExplicitForAll GHC extension,

which allows this syntax (albeit only to facilitate more useful extensions).

• Extracted code often implemented its own version of standard Haskell typeclasses,

(such as that for partial orders), implemented but did not instantiate a typeclass,

or did not implement/export useful functions (such as serialisation functions). In

all cases typeclass instances could be provided easily: standard Haskell typeclasses

can be implemented in terms of the custom typeclasses,

instance Ord Nat where

(<=) = Orderings.less_eq

instances can be provided ex post facto in Haskell,

instance Eq Nat where

(==) = equal_nat



4.2. PRACTICAL EXAMPLES AND PROPERTY TESTING 45

and trivial typeclass instances can be implemented manually, or, more efficiently,

using the StandaloneDeriving extension.

deriving instance Show Nat

deriving instance Read Nat

• In a similar vein, despite extracting both a typeclass for fresh variables and an

implementation of the typeclass for natural numbers, the code extraction failed to

join the two, so

instance Fresh Nat where

fresh_in = fresh_in_nat

had to be added manually to use the freshness implementation.

4.2 Practical examples and property testing

A common method of testing software is unit testing, in which code is subjected to single

pass/fail test units. This works well for most cases, but the mathematical nature of the

domain means that lots of test cases ought to be universally quantified over their inputs,

rather than a fixed constant as in unit testing. Property testing, on the other hand,

generates random test data and checks a property holds for all of them. This technique

is better suited to the problem: it approximates universal quantification, and the random

inputs find edge-cases quickly.

To implement property testing, I used HSpec [30], a library for structuring Haskell

tests, combined with QuickCheck [31], a library for property testing. A test program

using these libraries looks like Figure 4.1. HSpec and QuickCheck together provide some

useful functions which I use to write my tests:

hspec — run a suite of tests

describe — group a set of tests by which “feature” they belong to

it — describe a single test

property — test a QuickCheck property in HSpec

forAll — check that a property holds when quantified over a given generator

One problem with property testing à-la-QuickCheck is that random generators for

all tested types have to be written. QuickCheck provides generators for all basic types,

and some derived ones via a typeclass mechanism (e.g. if you have generators for types

t1 and t2, you also have a generator for t1 × t2), but any new types introduced have to

have custom generators written. I wrote generators for natural numbers, types, typing

contexts, and pre-terms, and also for ill-typed and well-typed terms.



46 CHAPTER 4. EVALUATION

main :: IO ()

main = hspec $ do

describe "unit inference" $ do

it "infers unit values to have unit type" $ do

property $

forAll contexts $ \c ->

infer' c PUnit `shouldBe` pure TUnit

Figure 4.1: an example test program: this asserts that, for all typing contexts c, the

inferred type of a unit value is the unit type

With these generators, I then wrote tests that asserted, in the context of various

categories, the following propositions — note the similarity in structure to the inductive

typing judgements. Write infer(Γ,M) for the result of running the inference algorithm

with context Γ on term M , and use ⊥ to indicate a type error. Consider all free variables

universally quantified (i.e. randomly-generated in the test).

• fresh variables:

– a fresh x generated with respect to S has the property x /∈ S

• unit inference:

– infer(Γ, unit) = 0

• variable inference:

– any variable x satisfies infer(Γ, x) = ⊥

– if x is fresh in the domain of Γ, infer(Γ, x) = ⊥

– if there is a τ such that Γ(x) = τ , then infer(∅, x) = τ

• λ-inference:

– if infer(Γ{x 7→ τ},M) = ⊥, then infer(Γ, λ(x : τ).M) = ⊥

– for all variables x, y, x ̸= y implies that y is not bound in the expression

λ(x : τ).y

– if infer(Γ{x 7→ τ},M) = σ, then infer(Γ, λ(x : τ).M) = τ → σ

• application inference:

– if infer(Γ,M) = ⊥, infer(Γ, (M N)) = ⊥

– also, if infer(Γ, N) = ⊥, infer(Γ, (M N)) = ⊥

– if infer(Γ,M) = T and T is not of the form τ → σ, then infer(Γ, (M N)) = ⊥

– if T is of the form τ → σ, but infer(Γ, N) ̸= τ , then infer(Γ, (M N)) = ⊥

– finally, if infer(Γ, N) = τ , then infer(Γ, (M N)) = σ



4.3. BENCHMARKING AND PERFORMANCE 47

• pair inference:

– if infer(Γ,M) = ⊥, then infer(Γ, (M,N)) = ⊥

– also, if infer(Γ, N) = ⊥, then infer(Γ, (M,N)) = ⊥

– if infer(Γ,M) = τ1 and infer(Γ, N) = τ2, then infer(Γ, (M,N)) = τ1 × τ2

• projection inference:

– if infer(Γ,M) = ⊥, then infer(Γ, π1(M)) = ⊥ and infer(Γ, π2(M)) = ⊥

– if infer(Γ,M) = T , but T is not of the form τ1 × τ2, then infer(Γ, π1(M)) = ⊥
and infer(Γ, π2(M)) = ⊥

– if T is of the form τ1 × τ2, then infer(Γ, π1(M)) = τ1 and infer(Γ, π2(M)) = τ2

• testing assumptions

– if a term M is generated from the ill-typed pool, infer(Γ,M) = ⊥

– on the other hand, if M is generated from the well-typed pool, infer(Γ,M) = τ

for some τ

All tests pass, producing output similar to that shown in Figure 4.2. While property

tests can never provide absolute confidence in the project (in this case the parameter

space is infinite), they do produce empirical evidence to suggest correctness.

4.3 Benchmarking and performance

Inputs to the type inference algorithm can be given a notion of size by counting the number

of nodes in the syntax tree of the input. For instance, the term π1((λ(x : 0).(x, unit)) unit)

is shown in Figure 4.3 and has 7 syntactic nodes. Formally, the size of a term M , |M |,
can be given recursively by

|M | =



1 M = unit

1 M = x

1 + |M ′| M = λ(x : τ).M ′

1 + |A|+ |B| M = (A B)

1 + |A|+ |B| M = (A,B)

1 + |P | M = π1(P )

1 + |P | M = π2(P )

Given this, the formalised type inference algorithm can be seen (by induction) to

have time complexity O(|M |) with respect to the input M , assuming that finite map

update/lookup operations are O(1). However, it is difficult to see how to show this

formally in Isabelle, and there is no reason to worry about performance until the code is

extracted anyway — at which point the code may have drastically different performance

characteristics than the idealised formal specification. This is because Isabelle does not



48 CHAPTER 4. EVALUATION

fresh variables

fresh in a set

unit inference

infers unit values to have unit type

inference of variables

undefined in the empty context

undefined if fresh in a context

infers the correct type if in a context

inference of lambdas

propagates type errors

doesn't bind extraneous variables

infers a correct type

inference of applications

propagates type errors on the left

propagates type errors on the right

undefined for non-arrow application

undefined for type mismatch

infers correct type

inference of pairs

propagates type errors on the left

propagates type errors on the right

infers correct type

inference of projection

propagates type errors

undefined for non-pair application

infers correct type

testing assumptions

ill-typed terms are ill-typed

well-typed terms are well-typed

Finished in 48.3063 seconds

21 examples, 0 failures

Figure 4.2: output from property testing



4.3. BENCHMARKING AND PERFORMANCE 49

PFst

PApp

PFn PUnit

x TUnit PPair

PVar PUnit

x

Figure 4.3: an example syntax tree: syntactic nodes are shown by ellipses, with incidental

data in boxes

directly “project out” the function definition (as type-theoretic proof assistants such as

Coq [32] often do with proof terms), but instead performs a series of translations. The

steps [33] are as follows:

1. Re-write the function definition using a set of rules encoded in a higher-order rewrite

system — a rewrite system on typed λ-terms — these may be automatically gener-

ated by e.g. the function definition, or manually by proving a rewriting to hold in

Isabelle.

2. Once the re-writing has taken place, the result is encoded in an intermediate lan-

guage similar to Haskell, known as Mini-Haskell.

3. If the target language is one without typeclasses (i.e. not Haskell), then the type-

classes in Isabelle are translated into a dictionary structure using a translation [34]

originally used to specify Haskell’s typeclasses.

4. Finally, the resulting intermediate language statements are translated directly into

functional programming languages which allow for pure code: otherwise, the trans-

lations would not be valid.

Any of these steps may cause unpredictable performance characteristics. Therefore,

we are left to try and establish performance characteristics of the extracted code by the

scientific method, rather than mathematically.



50 CHAPTER 4. EVALUATION

4.3.1 Experimental method

There is a problem in that asymptotic complexity cannot be determined by any perfor-

mance measurements on finite inputs. However, since type inference is only likely to be

run on terms of a reasonable size, say, no more than 105, we can state that it has a

certain complexity within a given range of sizes, then conjecture that this extends to an

asymptotic result.

The experimental approach, is as follows:

1. Generate representative test data of several different orders of magnitude in the

reasonable range.

2. Benchmark the algorithm on each of these test inputs and record performance.

3. Correlate (logarithmic) runtime against (logarithmic) input size to determine an

asymptotic performance bound. A log/log plot is used since the range of values is

too large to plot reasonably, but I do not wish to disturb the relationship between

the data points. Plotting both logarithmically allows us to display the relationship

between inputs and runtime of several different orders of magnitude.

Ideally the data generated would be (pseudo-) random, in order to prevent any patterns

introduced in the test data from affecting the benchmark: the generators used to produce

test data could then be re-purposed to benchmark data. Another constraint is that the

expression must be well-typed in general, or the error propagating through will remove

most of the processing from the benchmark.

Unfortunately, QuickCheck’s random generation procedures turned out to be too slow

to produce large randomised inputs efficiently. QuickCheck uses the standard random

package for generic applications which is not optimised for speed, and QuickCheck itself

is not designed to produce large inputs, as its main use case is finding edge-cases (which

tend to be smaller). Benchmarking showed that random number generation was the

bottleneck, but perhaps this would be different if QuickCheck were designed differently.

Instead, I used deterministic algorithms to produce large inputs, according to a variety

of patterns:

1. well-typed terms, using all datatype constructors

2. pairs, with each sub-term a pair

3. projection functions applied to pairs repeatedly

4. applications, with each sub-term of equal size

5. applications, with unbalanced sub-terms

6. function binders in a chain

7. a sequence of binders, followed by bound variables



4.3. BENCHMARKING AND PERFORMANCE 51

benchProjections :: Int -> Term

benchProjections n

| (n <= 0) = PUnit

| (n `mod` 2 == 0) = PSnd . PPair PUnit $ benchProjections (n - 2)

| otherwise = PFst . flip PPair PUnit $ benchProjections (n - 2)

Figure 4.4: The Haskell function generating a test of projection performance based on a

size parameter.

These are designed to test general performance on varied inputs, on specific inputs, and

finally to stress the typing context operations. I then used the patterns to generate

data, sized from 1, increasing by a factor of 10 to 100,000, and wrote the data to file for

reproducibility (available under infer/samples in the source tree submitted with this

dissertation).

Producing well-typed terms was quite tricky, even for this simple type system. The

general approach was for each generator to assume that any recursive calls generated well-

typed terms, and maintain the invariant that the result it generates is also well-typed.

Then, the matter of choosing which sort of node was to be produced at any step in the

recursive algorithm was done by taking the remainder of the size required and producing

the corresponding type of data, which produced a well-distributed tree for a deterministic

algorithm. For instance, the algorithm for testing projections is shown in Figure 4.4.

Benchmarking algorithms on small inputs (“micro-benchmarking”) has the problem

of jitter: outside factors such as cache effects, branch prediction and kernel scheduling

can all cause the same algorithm with the same input to run at different rates.

Haskell’s laziness also adds another problem — since the parameter passed to the

function is not strictly-evaluated, the first evaluation of the function can take significantly

longer as in this case the input needs to be loaded from disk and parsed before being

processed.

Both these problems were solved by using the Criterion micro-benchmarking li-

brary [35]. This solution deals with jitter by running the algorithm repeatedly and dif-

fering numbers of times to generate enough samples for a statistically significant result

(generally an R2 value exceeding 0.99), and with laziness by evaluating the argument to

a normal form first.

4.3.2 Results

Results were extremely positive for the O(|M |) hypothesis. Figure 4.5 shows a strong

linear correlation for the general-performance dataset, while Figure 4.6 supports this

further, showing that every sort of structure produces linear performance on the target

range. The high levels of correlation on every graph lend extra credit to the hypothesis

of a linear-time algorithm. While it is possible that the algorithm is, in fact, super-linear

(or sub-linear!), on the input range the algorithm correlates well to a linear trend.



52 CHAPTER 4. EVALUATION

100 101 102 103 104 105

input size (nodes)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)
asymptotic performance

regression, r2 = 0.999
benchmark data

Figure 4.5: log-log plot of benchmark data size vs processor time, with a linear regression

fitted

Of particular interest is the context stress-test: this was included as the extracted

code uses a method of representing finite maps using closures that should be extremely

inefficient. It implements the lookup and update operations as follows:

type Context k a = k -> Maybe a

lookup :: Context k a -> k -> Maybe a

lookup c k = c k

update :: Eq k => Context k a -> k -> a -> Context k a

update c k a = \x -> if x == k then Just a else c x

empty :: Context k a

empty = \x -> Nothing

In the case of the extracted inference algorithm, this implementation of map should

result in quadratic slowdown when applied to binders followed by variable lookup, as the

closure representing the finite map grows in size. Unexpectedly, in the typing-context

dataset, this does not appear to be the case: even profiling the executable does not show

significant time spent in the closure, or in the equality implementation. It is possible that

the compiler is able to spot the idiom of using a closure as a dictionary and optimise this



4.3. BENCHMARKING AND PERFORMANCE 53

100 101 102 103 104 105

input size (nodes)

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)

asymptotic performance
regression, r2 = 0.997
benchmark data

(a) pairs

100 101 102 103 104 105

input size (nodes)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)

asymptotic performance
regression, r2 = 0.978
benchmark data

(b) projections

100 101 102 103 104 105

input size (nodes)

10 7

10 6

10 5

10 4

10 3

pr
oc

es
so

r t
im

e 
(s

)

asymptotic performance
regression, r2 = 0.996
benchmark data

(c) balanced applications

100 101 102 103 104 105

input size (nodes)

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)

asymptotic performance
regression, r2 = 0.986
benchmark data

(d) applications, biased to one side

100 101 102 103 104 105

input size (nodes)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)

asymptotic performance
regression, r2 = 0.986
benchmark data

(e) chain of function binders

100 101 102 103 104 105

input size (nodes)

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)

asymptotic performance
regression, r2 = 0.978
benchmark data

(f) typing context stress

Figure 4.6: log-log plots (similar to Figure 4.5), showing performance on specialised inputs



54 CHAPTER 4. EVALUATION

100 101 102 103 104 105

input size (nodes)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

pr
oc

es
so

r t
im

e 
(s

)
asymptotic performance

regression, r2 = 0.997
benchmark data

(a) asymptotic performance

0 2 4 6 8 10 12 14
processor time on 100,000 nodes (ms)

extracted

manual

performance comparison

(b) comparison against extracted code

Figure 4.7: plots showing the performance of the manual implementation

away to a lookup table, or at least mitigate the poor performance of repeatedly branching

to a new closure while looking up a key. However, this seems very unlikely given the

current level of optimisations possible. GHC does use a somewhat unusual execution

model [36] as a compilation step, which may offer a performance improvement in this

case, compared to the näıve idea of how such an algorithm is compiled to a physical

architecture. More likely is that the input size is simply not large enough yet to cause the

linear-time lookup of the context to become significant compared to other (constant-time)

parts of the algorithm.

However, I would still expect a reasonable implementation with e.g. an ordered map

to be more performant: Figure 4.7 shows that a hand-implemented version using Haskell’s

containers ordered-map implementation still matches a linear trend in the size of the input

(as expected, since context lookup was not significant with the original implementation),

but the implementation is considerably slower than the näıve version. It seems that

context lookup may well be inefficient, but on reasonable input sizes it does not take

enough time to become significant.

4.4 Comparison to previous work

There have been other Isabelle formalisations of typed λ-calculi. Isabelle has its own

implementation (in src/HOL/Proofs/Lambda/ in the Isabelle source tree), which I will

use as a context in which to evaluate my project — using another implementation written

with different proof tools would confuse the issue, as different tools produce different

approaches to play to their strengths and weaknesses.

Despite using the same tooling, the two implementations are still very different: Is-

abelle’s implementation uses chained, tactic-style reasoning almost exclusively, introduces

types separately to terms, and uses a nameless representation of bound variables, whereas

my project uses explicit reasoning steps almost exclusively, attaches an explicit type to

every binder, and uses a named representation, combined with the use of a quotient type

to represent α-equivalence.



4.4. COMPARISON TO PREVIOUS WORK 55

4.4.1 Chained tactics vs. Isar

Using only tactics does tend to make the proof shorter (as can be seen from the proof

lengths for comparable lemmas in both implementations: subject reduction is shown in

approximately 15 lines in an apply-style proof, but my more explicitly-reasoned proof

takes over 90), but can also (albeit subjectively) decrease readability of the generated

proof [21]. It should be noted that line count is not in general a good metric for proof

length: the use of previous results and different proof approaches, proof steps, and tools

can affect line count significantly. Another advantage of the Isar approach is ease of

learning: if I could not get a tactic to show what I wanted, it was easier to break down

the proof statement into smaller steps using Isar and invoke a prover on each than it was

to learn what sequence of tactic applications would produce the desired result.

4.4.2 Church- vs. Curry-style types

The Isabelle implementation actually formalises the untyped calculus, before adding sim-

ple types afterwards. This approach allows for multiple type systems to be implemented

on top of a base that deals only with untyped operations, a great improvement on my

project, which would need to be re-written totally in order to add a significant change to

the type system.

However, not adding explicit types to binders does produce a marked difference in what

the theory shows: this is now Curry-style typing, where the question for type schemes

given a term M is no longer the Church-style “what is the type of M?”, but “what is

the set of possible types for M?”. Of course, this is intentional — but if a Church-style

typing system is desired, then this approach is not possible.

One way to achieve this modularity in a Church-style context would be to parameterise

the datatype for representing terms over all possible datatypes for representing types, as

well as variables. With this modification, adding a new type system would involve only

defining a new datatype representing the new types, and building the new typing system

around the term parameterised by these new types.

Even more generally, most of the work with binders and substitution could be done on

an abstract notion of terms-with-names. Consider defining abstract terms A to be either

1. a variable (bound or free) x

2. a pair (A,A)

3. a binder xC .A, binding a variable in an abstract term with some “context” C

This is sufficient to define α-equivalence, substitution and so forth. Then define a bijection

f between abstract terms and the concrete terms of the simply-typed calculus as follows:

f(x) = x

f((M N)) = (f(M), f(N))

f(λ(x : C).M) = xC .f(M)



56 CHAPTER 4. EVALUATION

and the obvious definition of f−1. All reasoning purely about operations involving names

can now be done on the abstract terms, then added to the concrete terms by defining the

concrete operation in terms of the abstract operation and f .

By way of example, suppose the notion of substitution on abstract terms has been

defined, and that we have proven Barendregt’s substitution lemma — that is, if x ̸= y

and x is not free in L, then

M[x ::= N ][y ::= L] = M[y ::= L][x ::= N [y ::= L]]

It can now be shown without proving the lemma again that this property holds for the

concrete terms as well. Define substitution on concrete terms (using a different notation

for clarity) by reference to substitution on abstract terms, using f as follows:

M [N/x] ≡ f−1 (f(M)[x ::= f(N)])

Then the lemma holds easily, since

M [N/x][L/y] ≡
(
f−1 (f(M)[x ::= f(N)])

)
[y ::= L]

≡ f−1
(
f
(
f−1 (f(M)[x ::= f(N)])

)
[y ::= f(L)]

)
≡ f−1 (f(M)[x ::= f(N)][y ::= f(L)])

≡ f−1 (f(M)[y ::= f(L)][x ::= f(N)[y ::= f(L)]])

≡ f−1 (f (M [L/y]) [x ::= f(N)[y ::= f(L)]])

≡ f−1 (f (M [L/y]) [x ::= f (N [L/y])])

≡ M [L/y][N [L/y]/x]

These terms also form a nominal set with similar structure to the original calculus,

so all results still hold with little modification. In this way a level of modularity and re-

usability can be achieved, without sacrificing Church-style typing. Currently, the amount

of project-specific Isabelle stands at around 4000 lines, with around 500 lines of reusable

theories. With this modification, the majority of work would be re-usable, and the only

project-specific work to deal with names would be defining a bijection with these abstract

terms and any language with similar semantics about binders. While this idea is my own,

it was previously found in a more general form by Gabbay et al [37]. Implementing this

approach as a library in Isabelle is left as future work.

4.4.3 Approaches to binders

The treatment of binders is a difficult part of the formalisation of any system that uses

them. The authors of the PoplMark challenge [6] specifically mention this topic, and

note that, of the solutions they have seen, there was no clear winner.

It can be seen from the extremely-small Isabelle implementation of de Bruijn indices

that a nameless representation (where α-equivalence is simply equality) is much easier to

formalise initially than the approach taken in my project — no permutation lemmas, no

α-equivalence arguments, no quotient types and so on. However, the subsequent effort

required to argue simple theorems such as the substitution lemma described above with de



4.4. COMPARISON TO PREVIOUS WORK 57

Bruijn indices is significant. Berghofer and Urban argue [38] that a nominal representation

has many advantages over indices, particularly in the context of thePoplMark challenge,

once the initial infrastructure has been set up. They mention that de Bruijn indices

are convenient to define, but become tedious after a while (at least in the context of

PoplMark), while nominal techniques have a significant setup cost but are convenient

thereafter in general. However, the paper does not draw a significant conclusion as the

scope of usage is limited to only a few problems.

Assuming that Berghofer and Urban’s conclusions and my own are correct, then,

nameless representations are a good choice for (shorter) implementations that do not use

the binding aspects of λ-calculus much, whereas the initial effort of nominal methods pro-

duce easier results when applied to more difficult theorems about binding. Additionally,

the named representation is arguably more human-readable and presents less notational

impedance than the nameless version, promoting later re-use.

4.4.4 Nominal implementation

An important comparison to draw is that of a manual approach to a nominal implemen-

tation, with that of Nominal Isabelle. I chose to perform things manually, as neither

Nominal Isabelle, nor its successor Nominal 2 support code generation at the time of

writing, and code generation was a required part of the project.

Unfortunately, this led to a lot of effort, that while educational, could have been

avoided with use of the automation provided by Nominal Isabelle. I had to manually

implement:

• A theory of permutations. While a theory was added to Isabelle’s library after I

began my project, initially there was no implementation of permutations in the

standard library.

• (strong) Induction principles for α-equivalent terms.

• A quotient type.

• Inequality rules for these terms, such as ∀A,B. (A,B) ̸= unit — these are partic-

ularly unfortunate as the number of lemmas required grow quadratically with the

number of different varieties of term.

• Structural equality rules, such as ∀A,B. (π1(A) = π1(B) =⇒ A = B).

• Proofs showing that functions on pre-quotient terms can also be functions on α-

equivalence classes, like the type inference function, then lifting them over the quo-

tient. This property is not true in general (consider the function that returns the

bound variables of a term), but Nominal Isabelle provides a couple of ways to define

functions which generate a proof obligation to show this property [39].

Nominal Isabelle would have saved a considerable amount of effort, and made several

tedious aspects of the project significantly shorter. However, the ability to extract code

allowed the project to be more practically useful, and testing this allowed for another

dimension that would not have been available with Nominal Isabelle.



58 CHAPTER 4. EVALUATION

4.5 Lessons learned

I learned several lessons during the course of the project. The first and most important,

was that the treatment of names in any language featuring binders is a large aspect of for-

malising the language. Considerable thought must be dedicated to correctly-formalising

the precise semantics of an area that is traditionally avoided as mathematically uninter-

esting.

Secondly, there is a tradeoff between preparatory work and ease of use: nameless

representations of the λ-calculus allow for an easy definition of both the calculus and

α-equivalence, but become tedious to use later on. Nominal techniques require a lot

of initial work to set up, but make subsequent work easier by comparison to nameless

representations.

More practically, extracting code from formalised implementations produces correct

code, but it may have unusual performance characteristics that do not match the idealised

versions.

4.6 Summary

In this chapter, I prepared the project for evaluation (§4.1), ran some property tests

to add confidence of the project’s correctness (§4.2). Moving on to benchmarking, I

produced some benchmark data, then ran benchmarks to determine both asymptotic and

relative performance of the inference algorithm (§4.3). Finally, I evaluated techniques

for implementing this project’s brief against similar work (comparing proof styles, church

and curry-style typing, approaches to binders, and automatic versus manual nominal

implementation) in Isabelle (§4.4), before finishing with the lessons I learned from the

project (§4.5).



Chapter 5

Conclusion

I have shown the development of a formalised implementation of a typed λ-calculus in

the proof assistant Isabelle, complete with correctness properties about the type system

and verified, extracted, code for type inference. All success criteria have been met, and

some extensions have been made, augmenting the core calculus and showing the confluence

property. This work differs from a typical implementation in its use of nominal techniques

that have several advantages over other methods of name binding.

5.1 List of results

Taking success criteria from my project proposal, they have all been met:

1. I have now learned sufficient theory to understand, implement, and justify my ap-

proach to the problem.

2. I gained sufficient practical experience before and during my project about the

Isabelle proof assistant to efficiently implement the project.

3. The representation of the calculus I chose has been sufficient to produce the rest of

my dissertation with.

4. I have proven the progress, preservation, and safety properties of the type system.

5. The implementation of type inference has been verified by showing it equivalent to

the inductive typing rules.

6. The extracted Standard ML code does compile and run as expected. Although

Haskell was the language I eventually used for testing, I don’t consider that this

change of decision disqualifies this success criterion.

7. The dissertation is complete.

59



60 CHAPTER 5. CONCLUSION

5.2 Further work

There is scope for further work in this area, and any one of several areas could be pursued.

Improving the nominal approach is one possible extension, perhaps adding some automa-

tion to remove some of the painful points. Nominal Isabelle could be improved/extended

so that code extraction is possible, or alternatively the abstract-term approach could be

implemented so that only relevant theory is implemented for any given system and issues

of names can be avoided altogether. Alternatively, I could extend the project to more

interesting calculi, like System F. System F adds binders at the type level, so this would

be a good test of the nominal approach when multiple binders are present. Additionally,

the type system is more powerful, allowing for more practical programming, while type

inference remains reasonable [40].

Improving performance of the extracted code is certainly possible. While performance

of the extracted code (surprisingly) is good without modification, I do not yet know why

this is the case. Investigating this will lead to some optimisations. Combined with a more

powerful type system, there are plenty of opportunities for efficiency improvements.

Further properties of the calculus can be shown, such as the strong normalisation

property. Strong normalisation is an important property of the simply-typed calculus

from the perspective of computability theory, as it shows that the calculus is not Turing-

complete (Turing machines may run forever).

5.3 Closing remarks

λ-calculus produces a model of computation by manipulating terms involving bound and

unbound names. By investigating a variety of approaches to binding names, and imple-

menting the most theoretically-pleasing approach, I have arrived at a verified represen-

tation of the λ-calculus, as used informally in mathematical arguments. Further, I have

shown that representing λ-terms by means of an explicit quotient with a nominal equiv-

alence relation over the concrete syntax is laborious, but feasible as an approach, and

comes with many advantages.



Bibliography

[1] Alonzo Church. “An unsolvable problem of elementary number theory”. In: Amer-

ican journal of mathematics 58.2 (1936), pp. 345–363.

[2] Guy Lewis Steele and Gerald Jay Sussman. “Lambda: The Ultimate Imperative”.

1976.

[3] J Barkley Rosser. “Highlights of the history of the lambda-calculus”. In: Annals of

the History of Computing 6.4 (1984), pp. 337–349.

[4] Bertrand Russell. “Mathematical logic as based on the theory of types”. In: Amer-

ican journal of mathematics 30.3 (1908), pp. 222–262.

[5] Andrzej Trybulec and Howard A Blair. “Computer Assisted Reasoning with

MIZAR.” In: IJCAI. Vol. 85. Citeseer. 1985, pp. 26–28.

[6] Brian E Aydemir et al. “Mechanized metatheory for the masses: The POPLmark

challenge”. In: International Conference on Theorem Proving in Higher Order Log-

ics. Springer. 2005, pp. 50–65.

[7] Hendrik Pieter Barendregt et al. The lambda calculus. Vol. 3. 1984.

[8] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of

computer and system sciences 17.3 (1978), pp. 348–375.

[9] Martin Hofmann. “A simple model for quotient types”. In: Typed lambda calculi and

applications (1995), pp. 216–234.

[10] Nicolaas Govert De Bruijn. “Lambda calculus notation with nameless dummies, a

tool for automatic formula manipulation, with application to the Church-Rosser

theorem”. In: Indagationes Mathematicae (Proceedings). Vol. 75. 5. Elsevier. 1972,

pp. 381–392.

[11] Furio Honsell, Marino Miculan, and Ivan Scagnetto. “π-calculus in (co) inductive-

type theory”. In: Theoretical computer science 253.2 (2001), pp. 239–285.

[12] Andrew M Pitts. “Nominal logic, a first order theory of names and binding”. In:

Information and computation 186.2 (2003), pp. 165–193.

[13] Conor McBride and James McKinna. “Functional pearl: I am not a number — I am

a free variable”. In: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell.

ACM. 2004, pp. 1–9.

[14] Thierry Coquand and Christine Paulin. “Inductively defined types”. In: COLOG-88.

Springer. 1990, pp. 50–66.

61



62 BIBLIOGRAPHY

[15] Adam Chlipala. “Parametric higher-order abstract syntax for mechanized seman-

tics”. In: ACM Sigplan Notices. Vol. 43. 9. ACM. 2008, pp. 143–156.

[16] Masahiko Sato et al. “Viewing λ-terms through Maps”. In: Indagationes Mathemat-

icae 24.4 (2013), pp. 1073–1104.

[17] Murdoch Gabbay and Andrew Pitts. “A NEW approach to abstract syntax involving

binders”. In: Logic in Computer Science, 1999. Proceedings. 14th Symposium on.

IEEE. 1999, pp. 214–224.

[18] Andrew Pitts. Nominal Sets and their Applications. Talk. 2011. url: https://www.

cl.cam.ac.uk/~amp12/talks/MGS2011_nominal_sets_slides.pdf.

[19] Murdoch J. Gabbay. “A Theory of Inductive Definitions with alpha-Equivalence”.

PhD thesis. University of Cambridge, 2001.

[20] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof

assistant for higher-order logic. Vol. 2283. Springer Science & Business Media, 2002.

[21] Markus Wenzel et al. “Isabelle/Isar — a versatile environment for human-readable

formal proof documents”. PhD thesis. Institut für Informatik, Technische Univer-

sität München, 2002.

[22] Brian Huffman and Ondřej Kunčar. “Lifting and Transfer: A modular design for

quotients in Isabelle/HOL”. In: International Conference on Certified Programs and

Proofs. Springer. 2013, pp. 131–146.

[23] Florian Haftmann and Makarius Wenzel. “Constructive type classes in Isabelle”. In:

International Workshop on Types for Proofs and Programs. Springer. 2006, pp. 160–

174.

[24] Laurent Chicli, Löıc Pottier, and Carlos Simpson. “Mathematical quotients and quo-

tient types in Coq”. In: International Workshop on Types for Proofs and Programs.

Springer. 2002, pp. 95–107.

[25] Masako Takahashi. “Parallel reductions in λ-calculus”. In: Information and compu-

tation 118.1 (1995), pp. 120–127.

[26] Robert Pollack. “Polishing up the Tait-Martin-Löf proof of the Church-Rosser the-

orem”. In: (1995).

[27] Florian Haftmann and Lukas Bulwahn. Code generation from Isabelle/HOL theories.

2016.

[28] The Commercial Haskell Group. The Haskell Tool Stack. 2017. url: https://

haskellstack.org (visited on 04/07/2017).

[29] The GHC Team. The Glasgow Haskell Compiler. 2017. url: https : / / www .

haskell.org/ghc (visited on 04/07/2017).

[30] Simon Hengel et al. HSpec: A testing framework for Haskell. 2017. url: https:

//hspec.github.io (visited on 03/14/2017).

https://www.cl.cam.ac.uk/~amp12/talks/MGS2011_nominal_sets_slides.pdf
https://www.cl.cam.ac.uk/~amp12/talks/MGS2011_nominal_sets_slides.pdf
https://haskellstack.org
https://haskellstack.org
https://www.haskell.org/ghc
https://www.haskell.org/ghc
https://hspec.github.io
https://hspec.github.io


BIBLIOGRAPHY 63

[31] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random

Testing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN Inter-

national Conference on Functional Programming. ICFP ’00. New York, NY, USA:

ACM, 2000, pp. 268–279. isbn: 1-58113-202-6. doi: 10.1145/351240.351266. url:

http://doi.acm.org/10.1145/351240.351266.

[32] Pierre Letouzey. “A new extraction for Coq”. In: International Workshop on Types

for Proofs and Programs. Springer. 2002, pp. 200–219.

[33] Florian Haftmann and Tobias Nipkow. “Code generation via higher-order rewrite

systems”. In: International Symposium on Functional and Logic Programming.

Springer. 2010, pp. 103–117.

[34] Cordelia V Hall et al. “Type classes in Haskell”. In: ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 18.2 (1996), pp. 109–138.

[35] Bryan O’Sullivan. Criterion: a Haskell micro-benchmarking library. 2017. url:

https://www.serpentine.com/criterion (visited on 04/07/2017).

[36] Simon L Peyton Jones. “Implementing lazy functional languages on stock hard-

ware: the Spineless Tagless G-machine”. In: Journal of functional programming 2.02

(1992), pp. 127–202.

[37] Murdoch J Gabbay and Aad Mathijssen. “Capture-avoiding substitution as a nom-

inal algebra”. In: Formal Aspects of Computing 20.4 (2008), pp. 451–479.

[38] Stefan Berghofer and Christian Urban. “A head-to-head comparison of de Bruijn

indices and names”. In: Proc. Int. Workshop on Logical Frameworks and Meta-

Languages: Theory and Practice. 2006, pp. 46–59.

[39] Cezary Kaliszyk and Henk Barendregt. “Reasoning about constants in Nominal

Isabelle, or: how to formalize the second fixed point theorem”. In: International

Conference on Certified Programs and Proofs. Springer. 2011, pp. 87–102.

[40] Luis Damas and Robin Milner. “Principal type-schemes for functional programs”.

In: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. ACM. 1982, pp. 207–212.

[41] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types.

Cambridge University Press, 2013.

[42] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard iso-

morphism. Vol. 149. 2006.

[43] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof

assistant for higher-order logic. Vol. 2283. 2002.

[44] Isabelle installation page. url: http://isabelle.in.tum.de/installation.html

(visited on 07/10/2016).

[45] Murdoch J Gabbay and Andrew M Pitts. “A new approach to abstract syntax with

variable binding”. In: Formal aspects of computing 13.3-5 (2002), pp. 341–363.

https://doi.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
https://www.serpentine.com/criterion
http://isabelle.in.tum.de/installation.html


64 BIBLIOGRAPHY



Appendix A

Project Proposal

65



Michael Rawson

Robinson College

mr644

Part II Project Proposal, Computer Science Tripos

Verified Metatheory and Type Inference
for a Name-Carrying Simply-Typed λ-Calculus

April 27, 2023

Project Originator: Dr. Dominic Mulligan

Resources Required: None

Project Supervisors: Dr. Dominic Mulligan and Dr. Victor Gomes

Signatures:

Director of Studies: Dr. Alastair Beresford

Signature:

Overseers: Dr. Ian Wassell and Prof. Lawrence Paulson

Signatures:



2 APPENDIX A. PROJECT PROPOSAL

Introduction

λ-calculus (see [7] for an overview) is a formal system of terms, often used in computability

theory, but also more recently as a base system for various type theories.

The calculus expresses computation as a series of abstractions (anonymous first-class

functions) and applications (function application), with reduction relations between them.

For example, the identity function

λx.x

applied to some term, say T , is clearly T : thus, the term

(λx.x) T

reduces to T .

This calculus, the “untyped” λ-calculus, clearly lacks any sort of type system. Adding

types to the calculus allows for various typed λ-calculi: these add many useful proper-

ties, including strong normalisation for some calculi [41], even allowing for mathematical

theorems to be expressed under the “propositions-as-types” slogan [42]. The simplest

of these is the simply-typed calculus λ→, consisting only of base names A,B, . . . and a

function-arrow type constructor, e.g. A → B.

Advantages of formalising such a calculus in a computerised proof assistant are

twofold: first, theorems and proofs about the calculus can be expressed, and therefore

automated, in the assistant. Secondly, it allows the generation of formally-verified code

from the assistant to a target language more suited for execution, thus achieving the holy

grail of bug-free software development.

Therefore, I propose that I use Isabelle, a mature and versatile proof assistant [43]

to formalise λ→ and prove some metatheory about the encoded calculus. In order to

achieve this, and by means of innovation, I will also attempt to use an unusual method

for encoding the calculus’ bound variables. I hypothesise that Isabelle’s quotient datatype

implementation is sufficiently mature to work with an explicit quotient over α-equivalence

without any external tooling support, such as Nominal Isabelle. Testing this hypothesis

will provide opportunity for evaluation, but to better judge my work, I will use my

formalisation to implement a type inference algorithm for λ→, prove it correct, then

extract executable code for it.

Required Resources

No extra resources other than the Isabelle software package is required for this project.

Isabelle’s 2016 release is freely available online [44], so this should not present a problem.

Starting Point

I’m familiar with types and the λ-calculus, both together and separately, through extra-

curricular study and through the various theory courses present in Part I of the tripos.



3

However, I’m a novice user of the Isabelle proof assistant: I have been given a crash

course in the assistant by my supervisor over the course of the summer break in the form

of exercises, reading, and advice, but my Isabelle could still use some improvement.

Structure of the Project

The aim of this project is to verify some metatheory about the calculus, but I will use

the goal of producing a verified type inference implementation to focus this process.

Additionally, this type inference goal allows me to evaluate the project more readily

than as a collection of theorems. A number of design choices have already been made in

order to make a concrete plan.

1. The λ-calculus contains binding terms, the abstractions, which it uses to bind vari-

ables “under” the term. The subject of binders is surprisingly complex, with many

possible representations, including:

• a concrete representation involving explicitly-bound variables

• de Bruijn indices, in which variables are referred to by the number of binders

from the point of reference

• higher-order abstract syntax, which embeds the binding in the implementation

language’s binders

• more complex approaches involving permutations of variables, such as in Nom-

inal Logic [45]

I have chosen the permutation approach, as it is the most mathematically inter-

esting and offers some advantages over other approaches (as argued in [45]). A

further advantage of this explicit approach to name-carrying over existing imple-

mentations, such as Nominal Isabelle, is the ability to extract executable code from

the verification.

2. In a similar vein, the notion of α-equivalence — that is, two terms are equivalent iff

they are the same except for their use of different bound variable names: f(x) = x2

and f(y) = y2 would be said to be α-equivalent — needs to be expressed in the

statement of lemmas in order to be fully general. This can either be interjected

wherever necessary, or equality of terms can be redefined using Isabelle’s quotient

type implementation. The latter simplifies later lemma definitions in exchange for

implementation difficulty, so I have chosen the quotient-type option for greater

elegance.

3. Several properties of the implementation can be used to check its correctness. Specif-

ically, I will prove the progress, type-preservation, and safety properties (as seen in

the Part IB semantics course) for my implementation. Additionally, I will show that

the type-checking procedure always produces the same results as the type inference

rules expressed inductively. This should suffice to “verify” the implementation has

been formalised as expected.



4 APPENDIX A. PROJECT PROPOSAL

The structure of the project is as follows, with several main sections:

1. An in-depth study of the simply-typed calculus and varieties (see above), to ensure

I have details correct before starting work.

2. Any necessary research in order to operate the Isabelle package effectively for this

task.

3. Development of the representation and operations of the calculus in Isabelle, allow-

ing expression of more complex theorems.

4. Proof of the progress, preservation, and safety properties of the calculus, following

on from the representational work.

5. Implementing and verifying the type inference algorithm.

6. Extracting Standard ML code for the algorithm.

7. Producing the dissertation.

Success Criteria

Each section from the project has its own success criterion:

1. Do I have sufficient theoretical knowledge to implement the project confidently?

2. Do I have sufficient practical knowledge to implement the project confidently?

3. Can I use my representation as a typed calculus successfully?

4. Have I proven the progress, preservation, and safety properties for the encoded

calculus?

5. Have I verified my type inference algorithm is equivalent to using the typing judge-

ments inductively?

6. Does the Standard ML code compile/work as expected?

7. Is the dissertation complete?

Since the project is formally-verified, there is an overall success criterion: will Isabelle’s

proof checker pass all my proofs as valid?

In order to properly evaluate the project, some other metrics of success might be

employed:

• speed of generated code

• fuzz-testing generated code, as a sanity check

• quality/complexity of the formalisation: compare my implementation to prior art

for code quality or complexity



5

• compare and contrast my unusual approach of using Isabelle’s quotient types directly

for name binding with other approaches

In case of finishing early, I have also planned some extensions.

Extensions

• extend the implementation to more advanced calculi, like System F or λΠ

• prove more properties about the calculus, like the congruence property — almost

any metatheoretical result about the calculus is relevant here

• experiment with different formulations of the type inference algorithm and observe

the effects on generated code and its performance

Timetable

In 10 fortnightly steps, the proposed timetable for this project is as follows:

1. Michaelmas, 24/10–7/11. Preparatory academic work: survey the current state of

the art, particularly in the areas of name-binding and typed calculi. I should be

able to implement and explain ideas from relevant papers in order to complete my

project.

2. Michaelmas, 7/11–21/11. Preparatory practical work: experiment and practise with

the Isabelle proof assistant. I should be able to express relevant ideas and theorems

more easily in the software.

3. Michaelmas, 21/11–5/12. Encode the calculus in Isabelle and start work on the

permutation approach to α-equivalence.

4. Michaelmas, 5/12–19/12. Finish work on the permutation theory and encode equiv-

alence with a quotient type. I will already have proven some vital properties of the

calculus at this point to show that equivalence of terms is an equivalence relation.

5. Lent, 9/1–23/1. Start proving properties about the calculus. I will aim to finish at

least a few to show for the progress report and presentation.

6. Lent, 23/1–6/2. Complete as many properties as possible before moving on to the

type inference. Implement the type inference algorithm and extract executable code

for it.

7. Lent, 6/2–20/2. Verify the type inference algorithm behaves correctly and finish

any remaining tasks for the practical work.

8. Lent, 20/2–6/3. Start writing the dissertation. The Introduction and Preparation

chapters should be complete, with the Implementation chapter started.



6 APPENDIX A. PROJECT PROPOSAL

9. Lent, 6/3–20/3. Finish writing the dissertation. All chapters should be complete as

far as possible at this point.

10. Lent and Easter, 20/3–19/5. Review, proof-read and make any required changes

to the dissertation. Reserve space for submission and emergencies, but also for

examination preparation.

This timetable assumes I complete no work at all outside of Full Term. Obviously, I

plan to work outside of term additionally, but this buffer allows me a safety margin to

ensure I complete the project.


	Introduction
	Project summary
	Previous work
	Completed work

	Preparation
	-Calculus
	Simple types
	The problem of -equivalence
	Nominal techniques
	Isabelle
	Requirements analysis and engineering
	Starting point
	Summary

	Implementation
	Freshness
	Swappings and permutations
	Raw -terms
	-equivalence
	Type inference algorithm

	-terms with -equivalence
	Typing judgements
	Substitution and -reduction
	Normal forms and the progress property
	Many-step reduction
	Inference correctness

	Extensions
	Unit and pair terms
	Confluence

	Summary

	Evaluation
	Framework for evaluation
	Practical examples and property testing
	Benchmarking and performance
	Experimental method
	Results

	Comparison to previous work
	Chained tactics vs. Isar
	Church- vs. Curry-style types
	Approaches to binders
	Nominal implementation

	Lessons learned
	Summary

	Conclusion
	List of results
	Further work
	Closing remarks

	Bibliography
	Project Proposal

